
Code Generation II
FEBRUARY 6, 2014

3-Address Code
Abstraction of assembly code.

Similar enough to allow certain optimizations.
◦ E.g. push r0; pop r0 can be dropped

Abstract enough to target different hardware.
◦ E.g. gcc uses the same front-end for all target platforms

3-Address Code
x := y ⊙ z

x := ⊙ y

x := y

x[i] := y

x := y[i]

if x ⊙ y goto z

goto x

Up to three addresses per
statement.

Addresses may store
operands or results.

“Addresses” may be
constants, registers, symbol
names, or labels.

Code Generation for Expressions

Code Generation For Expressions

80%
Complete!

Function Calls

Function
Parameters

Return
Address

Return
Value

Saved
Registers

Local
Variables

Temporary
Values

Activation Records
Memory allocation for a single function call.

Also known as call frames or stack frames.

Set up by parent function Set up by child function

Function
Parameters

Return
Address

Return
Value

Saved
Registers

Local
Variables

Temporary
Values

Activation Records

The frame pointer identifies the start of the record.
◦ Typically set by callee based on stack pointer.

Some fields may be kept in registers.
◦ Cool: ra register for return addresses.
◦ x86_64 keeps (some) parameters and return value in registers.

Calling Conventions
Pre- and post-conditions for function calls.

◦ Specify how arguments are passed.

◦ Specify how to return the result.

◦ Specify which registers are unaffected by call.

Which Calling Conventions to Use?

COOL COMPILERS

◦ Cool’s call instruction sets
ra.

◦ Otherwise, it’s entirely up to
you.

X86_64 COMPILERS
◦ x86_64’s call instruction

stores address on stack.

◦ Must be consistent to call
external functions (e.g.
puts).

◦ Refer to x86_64 Machine
Level Programming.

http://www.cs.virginia.edu/~weimer/2012-4610/reading/bryant-ohallaron-x86-64.pdf

Function Call Example
Cool virtual machine.

Calling conventions:

◦ Arguments are passed on
stack. Arg 1 is below arg N.

◦ Return value in r1.

◦ All other registers are callee-
saved.

max(Int x, Int y) : Int {

if (x < y) then y else x fi

}

main() : Object {

max(1,2)

}

Function Call Example: Syntax Trees

method

main [] dispatch

max [∙, ∙]

method

max [x,y] if

<

x y

y x

1 2

Function Call Example: Stack Discipline
2

ra ra

fp fp

2 2 2 2 2 2

1 1 1 1 1 1

Push args Call max Save regs Eval expr Restore
regs

Return

fp fp fp

Function Call Example: Stack Discipline
2

ra ra

fp fp

2 2 2 2 2 2

1 1 1 1 1 1

Push args Call max Save regs Eval expr Restore
regs

Return

fp fp fp

Point the fp
wherever you want
to make generation

easy.

Closing Thoughts
Simple functions (like max) do not need a stack frame.
◦ Avoids saving and restoring registers.

◦ Avoids updating and restoring fp.

◦More complicated code generation.

For performance, update sp once at start.
◦ Access temporaries and locals via explicit offsets from fp.

Objects

Implementation Considerations
How to lay out object in memory?

How to implement inheritance?

How to implement dynamic dispatch?

Struct Layout

Lay out fields contiguously.
◦ Each field at fixed offset.

Insert padding where
needed for alignment.

Field Offset

Attribute 1 0

Attribute 2 1

… …

Attribute N N

Alignment?
Data may only be read from some subset of addresses.

On x86_64 address must be multiple of data size.
◦ 8-byte pointers must have address divisible by 8.
◦ 4-byte ints must have address divisible by 4.
◦ Object tend to have alignment of largest field.

Not a concern for Cool.

Inheritance
Liskov Substitution Principle:

If B is a subclass of A, then
an object of class B can be
used wherever an object of
class A is expected.

The fields B inherits from A
must have the same offsets.

Field Offset

Attribute A.1 0

Attribute A.2 1

… …

Attribute A.N N

Attribute B.1 N+1

Attribute B.2 N+2

… …

Static Dispatch

Like function calls with two modifications:

1. Pass “self” as implicit parameter.

2. Place fields in “self” object into symbol table.

Dynamic Dispatch
Class A {

f(): Object {

out_string(“A”)

}

g(): Object {

f()

}

}

Class B inherits A {

f(): Object {

out_string(“B”)

}

}

Dynamic Dispatch
What does e.g() print?
◦ If e is an A: “A”

◦ If e is a B: “B”

g() must work for both.

Need to look up method
label in object at run time,
not compile time.

How?
More fields.

Implementing Dynamic Dispatch
Methods are same for all
instances of class.
◦ Carrying copies of labels in

all objects is redundant.

Instead use one virtual
function table (vtable) per
class instead.

Object Layout Offset

vtable 0

Attribute 1 1

… …

vtable Layout Offset

Method 1 0

… …

Dynamic Dispatch Example
Calling conventions:

◦ Self object pointer passed on
stack before arguments.

◦ Arguments passed on stack. Arg 1
is below arg N.

◦ Return value in r1.

◦ All other registers are callee
saved.

Dispatch Tables

Offset A B

0 A.f B.f

1 A.g A.g

Dynamic Dispatch Example
A.g:

push ra

ld r1 <- sp[1] ; get self obj

push r1 ; pass self arg

ld r1 <- r1[0] ; get vtable

ld r1 <- r1[0] ; get f() label

call r1

; return value now in r1

pop ra ; self obj

pop ra ; return addr

return

