Data-Flow Analysis ||




Data-Flow Analysis Review

Goal: Model program state along all program paths.

Concern: Undecidable. Also, number of paths is exponential.

Approach: ) ()

> Consider subset of state (data-flow value).
°Reduce paths: IN[b] = A, jieceqes » OUTIA] (Meet operator).
> Compute: ouT[b] = f,(IN[b]) (transfer function).

> Necessarily approximate solution. (] (]




The Meet Operator and Its Domain

Property Definition

ldempotent XANX =X
Commutative XNy =YANX
Associative xAN(yANz)=(xANYy)Az
Top (T) V. TAXx=x
Bottom (L) Vx.IANx =1




The Meet Operator and Its Domain

Property Definition

ldempotent XANX =X
Commutative XNy =YyAX
xAN(yANz)=(xANYy)Az

Implementation

o detail Definition

Top (T) Needed for

| Bottom (L) termination AN




Meet Semilattices

T ={a,b,c}
We can define a partial order: — T

> Reflexive, antisymmetric, transitive. @by ach b

AXSYEXNY =X D<><l

{a} {b} {c}
Greatest Lower Bound (glb) \J/
cglb(x,y) =x Ay 1 =1}

XSCy=xNy=x




Transfer Functions

Property Definition

ldentity Function 3] e F.VxeV.I(x) =x
Closed under Composition  Vf,g € F.h(x) = g(f(x)) > hE€F

Monotone (1) Vx,y e V.Vf €F
fany) < f)AfQ)
Monotone (2) Vx,y eV.Vf €F

x<y=>fx)<f)




Transfer Functions

Property Definition

ldentity Function 3] e F.VxeV.I(x) =x
Closed under Composition  Vf,g € F.h(x) = g(f(x)) > hE€F

Monotone (1) /x,y eEV.Vf €EF
Needed for
<
PERy) s FORTo)
| Monotone | Vx,y EV.VfEF

x<y=>fx)<f)




Statements vs. Basic Blocks

We often define transfer functions for statements instead of
basic blocks.
°If basic block B = (51, S3, ... Sp), then fp = f¢ oo fo of

Data-flow analysis does not require maximal blocks.
o Same result if each block is one statement.

Basic blocks are an optimization: fewer nodes in the graph.



Forward Data-Flow Algorithm

Given:

> V: values of lattice For each block b, ouT[b] =T

> /\: meet operator OUT[ENTRY] = Viyrry

° F: set of transfer functions  While any out changes

° CFG with unique ENTRY and For each block b except ENTRY
EXIT nodes IN[b] = A, ouT[a]

° Ventry: data-flow value for ouT[b] = f.(IN[b])
ENTRY node g



Backward Data-Flow Algorithm

Given:

> V: values of lattice For each block b, IN[b] =T

> \: meet operator IN[EXIT] = vy o

° F: set of transfer functions ~ While any INn changes

° CFG with unique ENTRY and For each block b except ExiT
EXIT nodes ouT[b] = A, IN[c]

o \I:Ec;(gédata-flow value for ExiT N[b] = £,(ouT[b])



Live Variable Analysis

Goal: Determine range of
statements in which a value
may be needed.

Used in:
o Dead code elimination.

> Register allocation.

1i ro <- 1
ble rl r2 L1

/\

1i ro <- 2 L1:

jmp L2 1i re <- 3
\/
L2:
add r2 <- rl ro



Live Variable Analysis

Direction: Backward
1i re <- 1

Values: Set of live locations.
ble rl r2 L1

Ve {ril0 <i<7}u{sp[jll0 </}
/\

Meet operator: set union 1li r@ <- 2 11
Transfer functions: jmp L2 1i r@e <- 3
cop ra <- rb rc ~——

L2:

°f(x) ={rb, rc} U (x — {ra})
add r2 <- rl ro



Constant Propagation

11 rl <-© Direction: Forward
1i ro <- ©
beq ro rl1 L1 Values:

t/////’”‘\\\\\‘ (re, ri, ..r7,sp[j]..)
op; € {T(unknown), L(nac)} UZ

st sp[2] <- rl L1:

ld rl <- rif[2] if ii[i] ; ™ Meet operator:
jmp L2 mul rl <- rl re 0(...,xi, )/\ (...,yi, ) —
\/ o Usual rules for T and L
Lo ccifx; =y;=c¢
1d r@ <- sp[2] > 1 otherwise
bz ro L3



Constant Propagation

li r1 <- @ Transfer Functions:
1li ro <- ©

beq re r1 L1 Statement Value
/\ liric-c ?

L1:

st sp[2] <- rl . I ldri<- spl[j] ?
;gpri;_ Lo st sp[i] <- rj ?
mul rl <- rl ro
\/ mul ra<-rbrc ?
L2: call ri ?
1d r@ <- sp[2]

bz ro L3



Redundant Expressions

Global Common Expressions

mul rl <- r2 r3 L1:
jmp L2 mul r4 <- r2 r3

~.

L2:
mul r5 <- r2 r3



Redundant Expressions

Global Common Expressions

mul rl <- r2 r3 L1:
jmp L2 mul r4 <- r2 r3

\/ r2*r3 is already

L2 computed on
| mul r5 <- r2 r3 | every path




Redundant Expressions

Global Common Expressions

mul rl <- r2 r3 : mul r6 <- r2 r3 L1:
jmp L2 mul r4 <- r2 r3 mov rl <- ré6 mul ré <- r2 r3
\/ ‘jmp L2 mov rd <- ré
L2:
mul r5 <- r2 r3 mov r5 <- ré6



Redundant Expressions

Global Common Expressions

mul rl <- r2 r3 : mul r6 <- r2 r3 L1:
jmp L2 mul r4 <- r2 r3 mov rl <- ré6 mul ré6 <- r2 r3
\/ ‘jmp L2 mov r4 <- ré |
L2:
mul r5 <- r2 r3 |  mov r5 <-ré6 |

Clean up with copy propagation.



Redundant Expressions

Loop Invariant Expressions

v
L1:
bz ro L2 r2 and r3 are
\ not modified
__div rl <- r2 r3 in loop
jmp L1
|

v



Redundant Expressions

Loop Invariant Expressions

div r4 <- r2 r3

v v
bz ro L2 bz ro L2
| —> |
__div ri <- r2 r3 |_mov rl <- r4
jmp L1 jmp L1
| |

v v



Redundant Expressions

Loop Invariant Expressions

div r4 <- r2 r3

v
L1: Could cause
bz r’f L2 » divide-by-zero!
__div rl <- r2 r3 |_mov rl <- r4
jmp L1 jmp L1
| |

v v



Redundant Expressions

Loop Invariant Expressions bz 10 L2
I div r4 <- r2 r3

|

v ¥

L1: L1:

bz ro L2 1

} #
_aiv ri <- r2 r3 _.r;;ov ri<- r4
._'.j.mp L1 an ro L1
| |

v v



Redundant Expressions

Partially Redundant Expressions

add rl <- r2 r3

\/ Assume r2

and r3 are not

/\ modified.

add r4 <- r2 r3




Redundant Expressions

Partially Redundant Expressions

add rl <- r2 r3 -
\/ Move
expression
/\ here?

add r4 <- r2 r3




Redundant Expressions

Partially Redundant Expressions

add r1 <- r2 r3 add r5 <- r2 r3

\/ mov rl i— r5 1

add r4 <- r2 r3 mov rd4d <- r5 .. add r4 <- r2 r3




Code Motion and Debugging

We are changing the order of evaluation.
°“Don’t break the build” — all valid runs must still be valid.

> Evaluate expressions only if the naive code would.

What about reordering invalid runs?
o E.g., an exception gets moved after database update.

- Need to maintain sequence of user-visible state changes.

This is why debugging optimized code is not always obvious.



Lazy Code Motion

1. Find anticipated expressions at each program point p.
> |.e., all e such that all paths from p eventually compute e.

2. Determine available expressions at each point p.
3. Postpone expressions as long as possible.

4. Eliminate unused temporaries.



Anticipated Expressions

Direction: Backward

Values: Sets of expressions Use set:
cuse, = {e|e is computed in b}
Kill set:

Vexit = {} o kill, =
{e|3x.isop(x,e) ANdef(x,b)}

Meet operator:

Transfer function:
° f,(x) = use, U (x — killy)



Available Expressions

Direction: Forward

Values: Sets of expressions , o
P After this analysis, insert

Meet operator: [ expressions at points where
y - {} the expression is first
SNTRY anticipated.

Transfer function:
° fp(x) = available[b] — kill,,



Postponable Expressions

Direction: Forward

Values: Sets of expressions

Vet vor: earliest|b]| =
=Et OPEIator: anticipated|b] —
Ventry = U available|b)

Transfer function:
> fp, = (earliest[b] U x) — use,



Used Expressions

Direction: Backward

Values: Sets of expressions

Meet operator: U

Vit = U

Transfer function:
° fp,(x) = (use, U x) — latest[b]



