LOOPS

Loops!

while a.runs() loop {
while b.runs() loop

c.foo()
pool;

b.reset(); \:j/

} pool

Not a Loop!

if a.isEven() then {
Even:
b.foo();
goto 0dd;
} else {
Odd:
b.bar();
goto Even;

Optimizing Loops

Most program time is spent in loops.

> Otherwise, run time would be roughly proportional to
program length.

Not-a-loop cycles are rare in practice, even with goto.
°c Programmers tend not to think that way.

> How would you normally write the code on the previous slide?

Detecting Loops: Overview

“Natural Loops”:
°Entry node (“header”) that dominates all nodes in loop.

° Back edge from within loop body to header.

Independent of how loop is written syntactically.
>Same handling for for-loops, while-loops, etc.
°|n practice, many uses of goto form natural loops.

Loop detection largely cribbed shamelessly from Jeffrey Ullman’s slides at:
http://infolab.stanford.edu/~ullman/dragon/w06/lectures/dfa3.pdf

Dominators Revisited

Direction: Forward

X dominatesY (X = Y) Values: Sets of CFG nodes.
° Every path to Y goes through X. °vgye, = {ENTRY}
°Note: X = X °|nitial value =N

X strictly dominates Y (X > Y) Meet operator: ()
"X ZY, but X #Y. Transfer function:

°fp(x) = x U {B}

Kinds of Edges

Defined relative to Depth-First Spanning Tree of CFG.

1. Tree edges.

2. Advancing edges: Node to proper descendent (includes
tree edges).

3. Retreating edges: Node to ancestor (including self).

4. Cross edges: No ancestor relationship between nodes.

DFS Tree Edges Example

DFS Tree Edges Example

Label nodes
from N to 1 after

processing all

o children.
\

Tree Edges

DFS Tree Edges Example

Retreating Edges

/ \/ Advancing Edge

Cross Edge

DFS Tree Edges Example

Retreating Edges Retreating
/ \ edges always go
from high to low in
DFS order.

Back Edges, Reducibility, and Deptr

An edge is a back edge if its head dominates its tail.
cBack edges are retreating edges.

A graph is reducible iff all retreating edges are back edges.

The depth of a CFG is the maximum number of retreating
edges on any acyclic path.

° For reducible graphs, depth is fixed regardless of order of
visiting children.

Depth Example

r°
o -2 W
¢

J
©

Loop Detection Algorithm

For each back edge n — d:
loop « {n,d}
Mark d as visited.

For each node n' in DFS of
reverse edges from n:

loop < {n'} U loop

Y

Loop Detection Algorithm

Edge: 4 —» 1

For each back edge n — d: loop = {1, 4}

loop « {n,d}
Mark d as visited.

For each node n' in DFS of
reverse edges from n:

loop < {n'} U loop

06000

Loop Detection Algorithm

Edge: 4 —» 1
For each back edge n — d: /Q loop = {1, 4}
loop < {n,d} Q\
Mark d as visited.
For each node n' in DFS of 3
reverse edges from n: \a)

loop <« {n'} U loop
O

Loop Detection Algorithm

For each back edge n — d:
loop « {n,d}
Mark d as visited.

For each node n' in DFS of
reverse edges from n:

loop < {n'} U loop

\g)

Edge: 4 —» 1
loop = {1, 2,4}

Loop Detection Algorithm

For each back edge n — d:
loop « {n,d}
Mark d as visited.

For each node n' in DFS of
reverse edges from n:

loop < {n'} U loop

\g)

Edge: 4 —» 1
loop = {1, 2, 3, 4}

Loop Detection Algorithm
0 Edge: 3 — 2

For each back edge n — d: loop = {2,3)
loop « {n,d}
Mark d as visited. <:
For each node n' in DFS of
reverse edges from n: 9

loop < {n'} U loop

Loop Detection Algorithm
Q Edge: 3 — 2

For each back edge n — d: loop = {2,3)
loop « {n,d}
Mark d as visited. @
For each node n' in DFS of
reverse edges from n: @

loop < {n'} U loop

O
D

Loop Detection Algorithm

Found 2 loops:
°A:{1,2,3,4}
°B:{2, 3}

For each back edge n — d:
loop « {n,d}
Mark d as visited.
For each node n' in DFS of

Since B C A4, we

loop < {n'} U loop B is innermost loop.

reverse edges from n: \a,/ | know A contains B.

Overlapping Loops

Loops:

°A: {1, 2}
°B: {1, 2, 3}
°C: {1, 2, 4}

Merge B and C:
°BC: {1, 2, 3, 4}

BC contains A.

Loop Unrolling

Loop Example

L1:

L2:

1i re <- ©

syscall I0.in_int
1i r2 <- ©

1i r3 <- 1

ble rl ro L2

add r2 <- r2 ro
add r@ <- ro r3
jmp L1

mov rl <- r2
syscall I0.out int

> ./cool --profile test.cl-asm
8191

33542145

PROFILE: instructions
PROFILE: pushes and pops
PROFILE: cache hits
PROFILE: cache misses

PROFILE: branch predictions
PROFILE: branch mispredictions
PROFILE: multiplications
PROFILE: divisions
PROFILE: system calls
CYCLES: 38294

Loop Example

1i r3 <- 1
L1:|ble rl1 ro L2

add r2 <- r2 ro

add r@ <- ro r3

jmp L1
L2: mov rl <- r2
syscall IO0.out_int

Loop Example

1i r3 <- 1 > ./cool --profile test.cl-asm
) 8191
L1: ble rl r@ L2 33542145

add r2 <- r2 ro PROFILE: instructions
add r® <- roe r3 PROFILE: pushes and pops

PROFILE: cache hits
ble rl reo L2 PROFILE: cache misses
add r2 <- r2 re PROFILE: branch predictions
add re <- ro r3 PROFILE: branch mispredictions
. K PROFILE: multiplications
Jmp PROFILE: divisions

L2: mov rl <- r2 PROFILE: system calls
syscall I0.out int [AAEEEEEERaEd

Loop Example

1i r3 <- 1 > ./cool --profile test.cl-asm
. 8191
L1: ble rl ro L2 33542145
add r2 <- r2 ro PROFILE:
add ro <- re r3 PROFILE: and pops
PROFILE: cache hits
ble rl ré L2 PROFILE: cache misses
add r2 <- r2 ro PROFILE: branch predictions
add r© <- re r3 PROFILE: branch mispredictions
. PROFILE: -
Jmp L1 PROFILE:
L2: mov rl <- r2 PROFILE:

syscall I0.out_int |

Loop Example

1i r3 <- 1

L1: ble rl ro L2
add r2 <- r2
add ro <- ro
ble rl ro L2
add r2 <- r2 ro
add r@ <- ro r3
jmp L1

L2: mov rl <- r2
syscall I0.out int

> ./cool --profile test.cl-asm

instructions

pushes and pops

cache hits

cache misses

branch predictions
branch mispredictions
multiplications
divisions
system calls

PROFILE:
PROFILE:
PROFILE:
PROFILE:

PROFILE:
CYCLES: 34498

Loop Example

1i r3 <- 1 > ./cool --profile test.cl-asm
) 8191

L1: ble rl r@ L2 33550336
add r2 <- r2 ro PROFILE: instructions
add r@ <- ro rs3 PROFILE: pushes and pops
PROFILE: cache hits
PROFILE: cache misses
add r2 <- r2 re PROFILE: branch predictions
add ro <- ro r3 PROFILE: branch mispredictions
. PROFILE: multiplications
Jmp L1 PROFILE: divisions
L2: mov rl <- r2 PROFILE: system calls

syscall I0.out int [RAEEEEEECERE

Loop Example

11 r3 <- 1 > ./cool --profile test.cl-asm
) 8191
L1: ble rl ro L2 33550336
add r2 <- r2 ro PROFILE: instructions
add r@ <- ro rs3 PROFILE: pushes and pops
PROFILE: cache hits
PROFILE: cache misses
add r2 <- r2 re PROFILE: branch predictions
add ro <- ro r3 PROFILE: branch mispredictions
. PROFILE: -
Jmp L1 PROFILE:
L2: mov rl <- r2 PROFILE:

syscall I0.out_int [k

Loop Example

11 r3 <- 1 > ./cool --profile test.cl-asm
. 8191
L1: ble rl r@ L2 23555336
add r2 <- r2 ro PROEILE:
add re <- ro r3 PROFILE:
PROFILE: ”
PROFILE: cache misses
add r2 <- r2 re PROFILE: branch predictions
add ro <- ro r3 PROFILE: branch mispredictions
. PROFILE: multiplications
Jmp L1 PROFILE: divisions
L2: mov rl <- r2 PROFILE: system calls

syscall I0.out_int [REERE

Loop Example

1i r3 <- 1

1i r4 <- 2

div r5 <- rl1 r4

mul ré <- r5 r4

beqg r6 rl L1

add r2 <- r2 ro

add r@ <- ro r3
L1: ble rl ro L2

add r2 <- r2 ro

add re <- ro r3

Loop Example

1i r3 <- 1 > ./cool test.cl-asm --profile
. 8191
11 rd <=2 33542145
div r5 <- rl r4 PROFILE: ructions
mul r6 <- r5 r4 PROFILE: 'nd pops
PROFILE: Cache hits
beq ré ri L1 PROFILE: cache misses
add r2 <- r2 re PROFILE: branch predictions
add ro <- ro r3 PROFILE: branch mispredictions
PROFILE: a
L1: ble rl ro L2 PROFILE :
add r2 <- r2 ro PROFILE:

add ro <- ro r3 CYCLES: | 30956

Bonus Material

Induction Variables

Knowing loop bounds would help remove loop instructions.

Many loop indices are affine expressions of program variables.
°E.8., Co + C1V1 + Co V5 ...

Induction variables: affine expressions of number of iterations.
© |.e., Co + Cli

Symbolic analysis can learn induction variables.

Affine Expression Example

for (int m = 10; m < 20; m++) A
X =m* 3;
a = foo(x);
y = a + 10;

< o X =
SURELU LY Y

Affine Expression Example

for (int m = 10; m < 20; m++) A
X =m* 3;

3 . m=1+10
a = foo(x); X = 3i+30
y = a + 10; T
} y = a+10

Data-Flow Analysis for Affine Expressions

Values: T (unknown), affine expression, or L (not affine).

°oLet f(m) be a function to look up variables in the current
data-flow value m.

Meet operator:

(A)) (W) = {f (M), AM)©) = f(m)(©)

, otherwise

Data-Flow Analysis for Affine Expressions

Transfer functions:

° For assignment statements to x
cwhen (¢ =0ory=1)and(¢c; =0o0rz =1):

‘m(v), VFEX
o fs(m)(x) =< ¢cg + cym(y) + com(2), x « cog+ 1y + ¢z
L otherwise

o Otherwise, f; =1

Composition: f, o f;=substitute values from f; into f,.

Handling Iteration

Let f* denote composing f with itself i times.

° Basic induction variables:
If f(m)(x) =m(x) +c, f*(m)(x) = m(x) + ci

> Symbolic constants:

If f(m)(x) = m(x), f(m)(x) = m(x)

Handling Iteration

Let f* denote composing f with itself i times.

o Induction variables (if x4 ... are basic induction variables or
symbolic constants):

If f(m)(x) = ¢ + cym(x1)
frim)(x) = co + ¢4 f" (m) (xl)

> Otherwise, f'(m)(x) =

Symbolic Analysis for Affine Expressions

Start with innermost loops and work outward.

