
Loops

Loops!

while a.runs() loop {

while b.runs() loop

c.foo()

pool;

b.reset();

} pool

Not a Loop!
if a.isEven() then {

Even:

b.foo();

goto Odd;

} else {

Odd:

b.bar();

goto Even;

}

Optimizing Loops

Most program time is spent in loops.
◦ Otherwise, run time would be roughly proportional to

program length.

Not-a-loop cycles are rare in practice, even with goto.
◦ Programmers tend not to think that way.

◦ How would you normally write the code on the previous slide?

Detecting Loops: Overview
“Natural Loops”:
◦ Entry node (“header”) that dominates all nodes in loop.

◦ Back edge from within loop body to header.

Independent of how loop is written syntactically.
◦ Same handling for for-loops, while-loops, etc.

◦ In practice, many uses of goto form natural loops.

Loop detection largely cribbed shamelessly from Jeffrey Ullman’s slides at:
http://infolab.stanford.edu/~ullman/dragon/w06/lectures/dfa3.pdf

Dominators Revisited

X dominates Y (X ≥ Y)
◦ Every path to Y goes through X.

◦ Note: X ≥ X

X strictly dominates Y (X > Y)
◦ X ≥ Y, but X ≠ Y.

Direction: Forward

Values: Sets of CFG nodes.
◦vENTRY = {ENTRY}

◦ Initial value = N

Meet operator: ⋂

Transfer function:
◦𝑓𝐵 𝑥 = 𝑥 ⋃ {𝐵}

Kinds of Edges

Defined relative to Depth-First Spanning Tree of CFG.

1. Tree edges.

2. Advancing edges: Node to proper descendent (includes
tree edges).

3. Retreating edges: Node to ancestor (including self).

4. Cross edges: No ancestor relationship between nodes.

DFS Tree Edges Example

DFS Tree Edges Example

1

24

5 3

Tree Edges

Label nodes
from N to 1 after

processing all
children.

DFS Tree Edges Example

1

24

5 3

Advancing Edge

Retreating Edges

Cross Edge

DFS Tree Edges Example

1

24

5 3

Retreating Edges
Retreating

edges always go
from high to low in

DFS order.

Back Edges, Reducibility, and Depth
An edge is a back edge if its head dominates its tail.
◦ Back edges are retreating edges.

A graph is reducible iff all retreating edges are back edges.

The depth of a CFG is the maximum number of retreating
edges on any acyclic path.
◦ For reducible graphs, depth is fixed regardless of order of

visiting children.

Depth Example

1

2

3

4

5

Depth = 2

Loop Detection Algorithm

For each back edge 𝑛 → 𝑑:
𝑙𝑜𝑜𝑝 ← {𝑛, 𝑑}

Mark 𝑑 as visited.

For each node 𝑛′ in DFS of
reverse edges from 𝑛:

𝑙𝑜𝑜𝑝 ← 𝑛′ ⋃ 𝑙𝑜𝑜𝑝

1

2

3

4

5

Loop Detection Algorithm

For each back edge 𝑛 → 𝑑:
𝑙𝑜𝑜𝑝 ← {𝑛, 𝑑}

Mark 𝑑 as visited.

For each node 𝑛′ in DFS of
reverse edges from 𝑛:

𝑙𝑜𝑜𝑝 ← 𝑛′ ⋃ 𝑙𝑜𝑜𝑝

Edge: 4 → 1

𝑙𝑜𝑜𝑝 = {1, 4}
1

2

3

4

5

Loop Detection Algorithm

For each back edge 𝑛 → 𝑑:
𝑙𝑜𝑜𝑝 ← {𝑛, 𝑑}

Mark 𝑑 as visited.

For each node 𝑛′ in DFS of
reverse edges from 𝑛:

𝑙𝑜𝑜𝑝 ← 𝑛′ ⋃ 𝑙𝑜𝑜𝑝

Edge: 4 → 1

𝑙𝑜𝑜𝑝 = {1, 4}
1

2

3

4

5

Loop Detection Algorithm

For each back edge 𝑛 → 𝑑:
𝑙𝑜𝑜𝑝 ← {𝑛, 𝑑}

Mark 𝑑 as visited.

For each node 𝑛′ in DFS of
reverse edges from 𝑛:

𝑙𝑜𝑜𝑝 ← 𝑛′ ⋃ 𝑙𝑜𝑜𝑝

Edge: 4 → 1

𝑙𝑜𝑜𝑝 = {1, 2, 4}
1

2

3

4

5

Loop Detection Algorithm

For each back edge 𝑛 → 𝑑:
𝑙𝑜𝑜𝑝 ← {𝑛, 𝑑}

Mark 𝑑 as visited.

For each node 𝑛′ in DFS of
reverse edges from 𝑛:

𝑙𝑜𝑜𝑝 ← 𝑛′ ⋃ 𝑙𝑜𝑜𝑝

Edge: 4 → 1

𝑙𝑜𝑜𝑝 = {1, 2, 3, 4}
1

2

3

4

5

Loop Detection Algorithm

For each back edge 𝑛 → 𝑑:
𝑙𝑜𝑜𝑝 ← {𝑛, 𝑑}

Mark 𝑑 as visited.

For each node 𝑛′ in DFS of
reverse edges from 𝑛:

𝑙𝑜𝑜𝑝 ← 𝑛′ ⋃ 𝑙𝑜𝑜𝑝

Edge: 3 → 2

𝑙𝑜𝑜𝑝 = {2, 3}
1

2

3

4

5

Loop Detection Algorithm

For each back edge 𝑛 → 𝑑:
𝑙𝑜𝑜𝑝 ← {𝑛, 𝑑}

Mark 𝑑 as visited.

For each node 𝑛′ in DFS of
reverse edges from 𝑛:

𝑙𝑜𝑜𝑝 ← 𝑛′ ⋃ 𝑙𝑜𝑜𝑝

Edge: 3 → 2

𝑙𝑜𝑜𝑝 = {2, 3}
1

2

3

4

5

Loop Detection Algorithm

For each back edge 𝑛 → 𝑑:
𝑙𝑜𝑜𝑝 ← {𝑛, 𝑑}

Mark 𝑑 as visited.

For each node 𝑛′ in DFS of
reverse edges from 𝑛:

𝑙𝑜𝑜𝑝 ← 𝑛′ ⋃ 𝑙𝑜𝑜𝑝

Found 2 loops:
◦𝐴: {1, 2, 3, 4}
◦𝐵: {2, 3}

Since 𝐵 ⊂ 𝐴, we
know 𝐴 contains 𝐵.

𝐵 is innermost loop.

1

2

3

4

5

Overlapping Loops
Loops:
◦ A: {1, 2}

◦ B: {1, 2, 3}

◦ C: {1, 2, 4}

Merge B and C:
◦ BC: {1, 2, 3, 4}

BC contains A.

1

2

4 3

Loop Unrolling

Loop Example
li r0 <- 0

syscall IO.in_int

li r2 <- 0

li r3 <- 1

L1: ble r1 r0 L2

add r2 <- r2 r0

add r0 <- r0 r3

jmp L1

L2: mov r1 <- r2

syscall IO.out_int

> ./cool --profile test.cl-asm
8191
33542145
PROFILE: instructions = 32774
PROFILE: pushes and pops = 0
PROFILE: cache hits = 0
PROFILE: cache misses = 15
PROFILE: branch predictions = 16382
PROFILE: branch mispredictions = 1
PROFILE: multiplications = 0
PROFILE: divisions = 0
PROFILE: system calls = 4
CYCLES: 38294

Loop Example
li r3 <- 1

L1: ble r1 r0 L2

add r2 <- r2 r0

add r0 <- r0 r3

jmp L1

L2: mov r1 <- r2

syscall IO.out_int

>

Loop Example
li r3 <- 1

L1: ble r1 r0 L2

add r2 <- r2 r0

add r0 <- r0 r3

ble r1 r0 L2

add r2 <- r2 r0

add r0 <- r0 r3

jmp L1

L2: mov r1 <- r2

syscall IO.out_int

> ./cool --profile test.cl-asm
8191
33542145
PROFILE: instructions = 28678
PROFILE: pushes and pops = 0
PROFILE: cache hits = 0
PROFILE: cache misses = 18
PROFILE: branch predictions = 12286
PROFILE: branch mispredictions = 1
PROFILE: multiplications = 0
PROFILE: divisions = 0
PROFILE: system calls = 4
CYCLES: 34498

Loop Example
li r3 <- 1

L1: ble r1 r0 L2

add r2 <- r2 r0

add r0 <- r0 r3

ble r1 r0 L2

add r2 <- r2 r0

add r0 <- r0 r3

jmp L1

L2: mov r1 <- r2

syscall IO.out_int

> ./cool --profile test.cl-asm
8191
33542145
PROFILE: instructions = 28678
PROFILE: pushes and pops = 0
PROFILE: cache hits = 0
PROFILE: cache misses = 18
PROFILE: branch predictions = 12286
PROFILE: branch mispredictions = 1
PROFILE: multiplications = 0
PROFILE: divisions = 0
PROFILE: system calls = 4
CYCLES: 34498

12% fewer
instructions

10% fewer
cycles

Loop Example
li r3 <- 1

L1: ble r1 r0 L2

add r2 <- r2 r0

add r0 <- r0 r3

ble r1 r0 L2

add r2 <- r2 r0

add r0 <- r0 r3

jmp L1

L2: mov r1 <- r2

syscall IO.out_int

> ./cool --profile test.cl-asm
8191
33542145
PROFILE: instructions = 28678
PROFILE: pushes and pops = 0
PROFILE: cache hits = 0
PROFILE: cache misses = 18
PROFILE: branch predictions = 12286
PROFILE: branch mispredictions = 1
PROFILE: multiplications = 0
PROFILE: divisions = 0
PROFILE: system calls = 4
CYCLES: 34498

Can we
remove

this?

Loop Example
li r3 <- 1

L1: ble r1 r0 L2

add r2 <- r2 r0

add r0 <- r0 r3

add r2 <- r2 r0

add r0 <- r0 r3

jmp L1

L2: mov r1 <- r2

syscall IO.out_int

> ./cool --profile test.cl-asm
8191
33550336
PROFILE: instructions = 24586
PROFILE: pushes and pops = 0
PROFILE: cache hits = 0
PROFILE: cache misses = 17
PROFILE: branch predictions = 8192
PROFILE: branch mispredictions = 1
PROFILE: multiplications = 0
PROFILE: divisions = 0
PROFILE: system calls = 4
CYCLES: 30306

Loop Example
li r3 <- 1

L1: ble r1 r0 L2

add r2 <- r2 r0

add r0 <- r0 r3

add r2 <- r2 r0

add r0 <- r0 r3

jmp L1

L2: mov r1 <- r2

syscall IO.out_int

> ./cool --profile test.cl-asm
8191
33550336
PROFILE: instructions = 24586
PROFILE: pushes and pops = 0
PROFILE: cache hits = 0
PROFILE: cache misses = 17
PROFILE: branch predictions = 8192
PROFILE: branch mispredictions = 1
PROFILE: multiplications = 0
PROFILE: divisions = 0
PROFILE: system calls = 4
CYCLES: 30306

21% fewer
cycles

Loop Example
li r3 <- 1

L1: ble r1 r0 L2

add r2 <- r2 r0

add r0 <- r0 r3

add r2 <- r2 r0

add r0 <- r0 r3

jmp L1

L2: mov r1 <- r2

syscall IO.out_int

> ./cool --profile test.cl-asm
8191
33550336
PROFILE: instructions = 24586
PROFILE: pushes and pops = 0
PROFILE: cache hits = 0
PROFILE: cache misses = 17
PROFILE: branch predictions = 8192
PROFILE: branch mispredictions = 1
PROFILE: multiplications = 0
PROFILE: divisions = 0
PROFILE: system calls = 4
CYCLES: 30306

Should be
33542145!

Loop Example
li r3 <- 1

li r4 <- 2

div r5 <- r1 r4

mul r6 <- r5 r4

beq r6 r1 L1

add r2 <- r2 r0

add r0 <- r0 r3

L1: ble r1 r0 L2

add r2 <- r2 r0

add r0 <- r0 r3

>

Handle odd
number of

iterations. On
x86 use mod
instruction.

Loop Example
li r3 <- 1

li r4 <- 2

div r5 <- r1 r4

mul r6 <- r5 r4

beq r6 r1 L1

add r2 <- r2 r0

add r0 <- r0 r3

L1: ble r1 r0 L2

add r2 <- r2 r0

add r0 <- r0 r3

> ./cool test.cl-asm --profile
8191
33542145
PROFILE: instructions = 24586
PROFILE: pushes and pops = 0
PROFILE: cache hits = 0
PROFILE: cache misses = 23
PROFILE: branch predictions = 8191
PROFILE: branch mispredictions = 1
PROFILE: multiplications = 1
PROFILE: divisions = 1
PROFILE: system calls = 4
CYCLES: 30956

19% fewer
cycles

Right
answer!

Bonus Material

Induction Variables

Knowing loop bounds would help remove loop instructions.

Many loop indices are affine expressions of program variables.
◦ E.g., 𝑐0 + 𝑐1𝑣1 + 𝑐2𝑣2…

Induction variables: affine expressions of number of iterations.
◦ I.e., 𝑐0 + 𝑐1𝑖

Symbolic analysis can learn induction variables.

Affine Expression Example

for (int m = 10; m < 20; m++) {

x = m * 3;

a = foo(x);

y = a + 10;

}

m = ?
x = ?
a = ?
y = ?

Affine Expression Example

for (int m = 10; m < 20; m++) {

x = m * 3;

a = foo(x);

y = a + 10;

}

m = 𝑖 + 10
x = 3𝑖 + 30
a = ?
y = a + 10

Data-Flow Analysis for Affine Expressions
Values: ⊤ (unknown), affine expression, or ⊥ (not affine).
◦ Let 𝑓(𝑚) be a function to look up variables in the current

data-flow value 𝑚.

Meet operator:

◦ 𝑓1 ∧ 𝑓2 𝑚 𝑣 =
𝑓1 𝑚 𝑣 , 𝑓1 𝑚 𝑣 = 𝑓2 𝑚 (𝑣)
⊥, otherwise

Data-Flow Analysis for Affine Expressions
Transfer functions:
◦ For assignment statements to x

◦ when (𝑐1 = 0 or 𝑦 = ⊥) and (𝑐2 = 0 or 𝑧 =⊥):

◦ 𝑓𝑠 𝑚 𝑥 =
𝑚 𝑣 , 𝑣 ≠ 𝑥
𝑐0 + 𝑐1𝑚 𝑦 + 𝑐2𝑚 𝑧 , 𝑥 ← 𝑐0 + 𝑐1𝑦 + 𝑐2𝑧
⊥, otherwise

◦ Otherwise, 𝑓𝑠 = 𝐼

Composition: 𝑓2 ∘ 𝑓1= substitute values from 𝑓1 into 𝑓2.

Handling Iteration

Let 𝑓𝑖 denote composing 𝑓 with itself 𝑖 times.

◦ Basic induction variables:
If 𝑓 𝑚 𝑥 = 𝑚 𝑥 + 𝑐, 𝑓𝑖 𝑚 𝑥 = 𝑚 𝑥 + 𝑐𝑖

◦ Symbolic constants:
If 𝑓 𝑚 𝑥 = 𝑚 𝑥 , 𝑓𝑖 𝑚 𝑥 = 𝑚(𝑥)

Handling Iteration
Let 𝑓𝑖 denote composing 𝑓 with itself 𝑖 times.

◦ Induction variables (if 𝑥1… are basic induction variables or
symbolic constants):

If 𝑓 𝑚 𝑥 = 𝑐0 + 𝑐1𝑚 𝑥1 +⋯ ,
𝑓𝑖 𝑚 𝑥 = 𝑐0 + 𝑐1𝑓

𝑖 𝑚 𝑥1 …

◦ Otherwise, 𝑓𝑖 𝑚 𝑥 = ⊥.

Symbolic Analysis for Affine Expressions
Start with innermost loops and work outward.

