Loops

Loops!

while a.runs() loop \{ while b.runs() loop c.foo()
pool;
b.reset();
\} pool

Not a Loop!

```
if a.isEven() then {
```

Even:
b.foo();
goto Odd;
\} else \{
Odd:
b.bar();
 goto Even;
\}

Optimizing Loops

Most program time is spent in loops.

- Otherwise, run time would be roughly proportional to program length.

Not-a-loop cycles are rare in practice, even with goto.

- Programmers tend not to think that way.
- How would you normally write the code on the previous slide?

Detecting Loops: Overview

"Natural Loops":

- Entry node ("header") that dominates all nodes in loop.
- Back edge from within loop body to header.

Independent of how loop is written syntactically.

- Same handling for for-loops, while-loops, etc.
- In practice, many uses of goto form natural loops.

Loop detection largely cribbed shamelessly from Jeffrey Ullman's slides at: http://infolab.stanford.edu/~ullman/dragon/w06/lectures/dfa3.pdf

Dominators Revisited

Direction: Forward

X dominates $\mathrm{Y}(\mathrm{X} \geq \mathrm{Y})$
${ }^{\circ}$ Every path to Y goes through X .

- Note: X \geq X

X strictly dominates $\mathrm{Y}(\mathrm{X}>\mathrm{Y})$
${ }^{\circ} \mathrm{X} \geq \mathrm{Y}$, but $\mathrm{X} \neq \mathrm{Y}$.

Values: Sets of CFG nodes.

- $\boldsymbol{v}_{\text {ENTRY }}=\{$ ENTRY $\}$
- Initial value $=N$

Meet operator: \cap
Transfer function:
${ }^{\circ} f_{B}(x)=x \cup\{B\}$

Kinds of Edges

Defined relative to Depth-First Spanning Tree of CFG.

1. Tree edges.
2. Advancing edges: Node to proper descendent (includes tree edges).
3. Retreating edges: Node to ancestor (including self).
4. Cross edges: No ancestor relationship between nodes.

DFS Tree Edges Example

DFS Tree Edges Example

DFS Tree Edges Example

DFS Tree Edges Example

Back Edges, Reducibility, and Depth

An edge is a back edge if its head dominates its tail.

- Back edges are retreating edges.

A graph is reducible iff all retreating edges are back edges.
The depth of a CFG is the maximum number of retreating edges on any acyclic path.

- For reducible graphs, depth is fixed regardless of order of visiting children.

Depth Example

Loop Detection Algorithm

For each back edge $n \rightarrow d$:
loop $\leftarrow\{n, d\}$
Mark d as visited.
For each node n^{\prime} in DFS of reverse edges from n : loop $\leftarrow\left\{n^{\prime}\right\} \cup$ loop

Loop Detection Algorithm

For each back edge $n \rightarrow d$: loop $\leftarrow\{n, d\}$ Mark d as visited.
For each node n^{\prime} in DFS of reverse edges from n : loop $\leftarrow\left\{n^{\prime}\right\} \cup$ loop

Edge: $4 \rightarrow 1$

$$
\text { loop }=\{1,4\}
$$

Loop Detection Algorithm

For each back edge $n \rightarrow d$:
loop $\leftarrow\{n, d\}$
Mark d as visited.
For each node n^{\prime} in DFS of reverse edges from n : loop $\leftarrow\left\{n^{\prime}\right\} \cup$ loop

Edge: $4 \rightarrow 1$

$$
\text { loop }=\{1,4\}
$$

Loop Detection Algorithm

For each back edge $n \rightarrow d$: loop $\leftarrow\{n, d\}$ Mark d as visited.
For each node n^{\prime} in DFS of reverse edges from n : loop $\leftarrow\left\{n^{\prime}\right\} \cup$ loop

Edge: $4 \rightarrow 1$

$$
\text { loop }=\{1,2,4\}
$$

Loop Detection Algorithm

For each back edge $n \rightarrow d$:
loop $\leftarrow\{n, d\}$
Mark d as visited.
For each node n^{\prime} in DFS of reverse edges from n : loop $\leftarrow\left\{n^{\prime}\right\} \cup$ loop

Edge: $4 \rightarrow 1$

$$
\text { loop }=\{1,2,3,4\}
$$

Loop Detection Algorithm

For each back edge $n \rightarrow d$:
loop $\leftarrow\{n, d\}$
Mark d as visited.
For each node n^{\prime} in DFS of
reverse edges from n : loop $\leftarrow\left\{n^{\prime}\right\} \cup$ loop

Edge: $3 \rightarrow 2$

$$
\text { loop }=\{2,3\}
$$

Loop Detection Algorithm

For each back edge $n \rightarrow d$:
loop $\leftarrow\{n, d\}$
Mark d as visited.
For each node n^{\prime} in DFS of
reverse edges from n : loop $\leftarrow\left\{n^{\prime}\right\} \cup$ loop

Edge: $3 \rightarrow 2$

$$
\text { loop }=\{2,3\}
$$

Loop Detection Algorithm

For each back edge $n \rightarrow d$:
loop $\leftarrow\{n, d\}$
Mark d as visited.
For each node n^{\prime} in DFS of reverse edges from n : loop $\leftarrow\left\{n^{\prime}\right\} \cup$ loop

Found 2 loops:

- A : $\{1,2,3,4\}$
- $B:\{2,3\}$

Since $B \subset A$, we know A contains B.
B is innermost loop.

Overlapping Loops

Loops:
-A: $\{1,2\}$
-B: $\{1,2,3\}$
-C: $\{1,2,4\}$
Merge B and C :

- BC: \{1, 2, 3, 4\}

BC contains A.

Loop Unrolling

Loop Example

Loop Example

jmp L1
L2: mov r1 <- r2
syscall IO.out_int

Loop Example

$i \quad r 3<-1$	> ./cool --profile test.cl-asm
L1: ble r1 r0 L2	8191
	33542145
add r2 <- r2 r0	PROFILE: instructions = 28678
add r0 <-r0 r3	PROFILE: pushes and pops = 0
ble r1 r0 L2	PROFILE: cache hits = 0
	PROFILE: cache misses = 18
add r2 <- r2 r0	PROFILE: branch predictions = 12286
add r0 <- r0 r3	PROFILE: branch mispredictions = 1
	PROFILE: multiplications = 0
jmp	PROFILE: divisions = 0
L2: mov r1 <-r2	PROFILE: system calls = 4
syscall IO.out_int	CYCLES: 34498

Loop Example

```
    li r3 <- 1
L1: ble r1 r0 L2
    add r2 <- r2 r0
    add r0 <- r0 r3
    ble r1 r0 L2
    add r2 <- r2 r0
    add r0 <- r0 r3
    jmp L1
L2: mov r1 <- r2
    syscall IO.out_int
```


Loop Example

Loop Example

Loop Example

li r3<-1	> ./cool --profile test.cl-asm
L1: ble r1 r0 L2	8191
	33550336
add r2 <- r2 r0	PROFILE: instructions $=24586$
add r0<- r0 r3	PROFILE: pushes and pops = 0
	PROFILE: cache hits
	PROFILE: cache misses = 17
add r2 <- r2 r0	PROFILE: branch predictions $=8192$
add r0<-r0 r3	PROFILE: branch mispredictions =
jmp L1	PROFILE:
L2: mov r1 <- r2	PROFILE: cycles
syscall IO.out_int	CYCLES: 30306

Loop Example

```
    li r3 <- 1
L1: ble r1 r0 L2
    add r2 <- r2 r0
    add r0 <- r0 r3
    add r2 <- r2 r0
    add r0 <- r0 r3
    jmp L1
L2: mov r1 <- r2
    syscall IO.out_int
```

>./cool --profile test.cl-asm
8191
33550336
PROFILE:
PROFILE:
PROFILE:
$\begin{array}{rlr}\text { Should be } \quad \text { ns } & =24586 \\ 33542145!\text { ps } & = & 0 \\ & \end{array}$
PROFILE: cache misses = 17
PROFILE: branch predictions = 8192
PROFILE: branch mispredictions $=1$
PROFILE: multiplications = 0
PROFILE: divisions = 0
PROFILE:
system calls =
4
CYCLES: 30306

Loop Example

Loop Example

Bonus Material

Induction Variables

Knowing loop bounds would help remove loop instructions. Many loop indices are affine expressions of program variables.

$$
{ }^{\circ} \text { E.g., } c_{0}+c_{1} v_{1}+c_{2} v_{2} \ldots
$$

Induction variables: affine expressions of number of iterations.

$$
\text { - l.e., } c_{0}+c_{1} i
$$

Symbolic analysis can learn induction variables.

Affine Expression Example

$$
\begin{array}{ll}
\text { for (int } m=10 ; m<20 ; m++)\{ \\
& x=m * 3 ; \\
& a=f o o(x) ;
\end{array} \begin{array}{ll}
& m=? \\
y=a+10 ; & x=? \\
\} &
\end{array}
$$

Affine Expression Example

$$
\begin{aligned}
&\text { for (int } m=10 ; m<20 ; m++)\{ \\
& x=m * 3 ; \\
& a=f o o(x) ; m=i+10 \\
& y=a+10 ;
\end{aligned} \begin{array}{ll}
x=3 i+30 \\
\} &
\end{array}
$$

Data-Flow Analysis for Affine Expressions

Values: T (unknown), affine expression, or \perp (not affine).

- Let $f(m)$ be a function to look up variables in the current data-flow value m.

Meet operator:
$\circ\left(f_{1} \wedge f_{2}\right)(m)(v)=\left\{\begin{array}{lr}f_{1}(m)(v), & f_{1}(m)(v)=\begin{array}{r}f_{2}(m)(v) \\ \perp,\end{array} \\ \text { otherwise }\end{array}\right.$

Data-Flow Analysis for Affine Expressions

Transfer functions:

- For assignment statements to x
${ }^{\circ}$ when $\left(c_{1}=0\right.$ or $\left.y=\perp\right)$ and ($c_{2}=0$ or $z=\perp$):
$\circ f_{s}(m)(x)=\left\{\begin{array}{lr}m(v), & v \neq x \\ c_{0}+c_{1} m(y)+c_{2} m(z), x \leftarrow c_{0}+c_{1} y+c_{2} z \\ \perp, & \text { otherwise }\end{array}\right.$
- Otherwise, $f_{s}=I$

Composition: $f_{2} \circ f_{1}=$ substitute values from f_{1} into f_{2}.

Handling Iteration

Let f^{i} denote composing f with itself i times.

- Basic induction variables:

$$
\text { If } f(m)(x)=m(x)+c, f^{i}(m)(x)=m(x)+c i
$$

- Symbolic constants:

$$
\text { If } f(m)(x)=m(x), f^{i}(m)(x)=m(x)
$$

Handling Iteration

Let f^{i} denote composing f with itself i times.

- Induction variables (if $x_{1} \ldots$ are basic induction variables or symbolic constants):

$$
\begin{aligned}
& \text { If } f(m)(x)=c_{0}+c_{1} m\left(x_{1}\right)+\cdots, \\
& f^{i}(m)(x)=c_{0}+c_{1} f^{i}(m)\left(x_{1}\right) \ldots
\end{aligned}
$$

-Otherwise, $f^{i}(m)(x)=\perp$.

Symbolic Analysis for Affine Expressions

Start with innermost loops and work outward.

