Optimization Overview

But first...

Questions about code generation?

Optimization Overview

FOR REAL THIS TIME

Back-End Overview

t1 =4l

Intermediate ; =:i+"§ Target Code
= (]

Code Generator (= 11*d3 Generator

t1 = 71+i3

Apply optimizations to any/all of these representations.

Intermediate Representations
Abbreviated /IR (or /L for Intermediate Language).

Generally each compiler has its own.
> We basically use Cool Asm as our IR.

Advantages:
> Machine independent: one optimization for Cool and x86 64.
> Exposes more opportunities than AST.

Optimization Goals

1.Get the right answer.

> No, really. Get the right answer.

2. Get it quickly:
> Remove redundant work.
> Do the remaining work “better”.

Optimization Goals

1.Get the right answer. “Better”:
> Or don’t bother with goal 2. BT G s
> Using less power.
7. Get it QUiCkly' > With fewer instructions.

o Less network traffic.
o Remove redundant work.

> Do the remaining work “better”.

Sort Analogy

How is gsort implemented in practice?

1. Use quicksort for high-level sort.
> Low complexity (Remove redundant work).

2. Use insertion sort for base case.
o Small constant (Make remaining work fast).

We will follow a similar approach in our optimizing compiler.

Peephole Optimizations

1. Slide window (peephole) What can we do with this?
over representation.

> Constant folding.

2. Pattern match and replace < Eliminate redundant ops.
with optimized code. - Strength reduction.

3. Repeat. > Algebraic simplification.

> Apply machine idioms.

Constant Foldi

ng

Depth-first, post-orc

er walk.

Match subtree and replace.

°E.g.

binop with two

constants.

o E.g. if-expression with
constant predicate.

Constant Foldi

ng

Depth-first, post-orc

er walk.

Match subtree and replace.

°E.g.

binop with two

constants.

o E.g. if-expression with
constant predicate.

Constant Foldi

ng

Depth-first, post-orc

er walk.

Match subtree and replace.

°E.g.

binop with two

constants.

o E.g. if-expression with
constant predicate.

Constant Foldi

ng

Depth-first, post-orc

er walk.

Match subtree and replace.

°E.g.

binop with two

constants.

o E.g. if-expression with
constant predicate.

Constant Folding

Depth-first, post-order walk.

Match subtree and replace.

°E.g. binop with two
constants.

o E.g. if-expression with
constant predicate.

Eliminating Redundant Ops

Many sequences, e.g.: call bar
- pep—rX—push—prX push ro pop rl
° pUSh—PXs—pop—X push ri pop o
°ld rX <- rY[Z] call foo
st pY[Z} <—rX—

can be deleted.

One pass may enable
others.

Eliminating Redundant Ops

Many sequences, e.g.: call bar

© pep—PrX5—push—rX
g F Assumes bar

* pUSR—PX;—pop—rX push ri does not expect
°1d rX <- rY[Z] call foo

strY |2} <—rX—

can be deleted.

ro to have a
certain value.

One pass may enable
others.

Eliminating Redundant Ops

Many sequences, e.g.: call bar
- pep—rX—push—prX push ro pop rl
° pHSh—PXG—pep—X push ri pop ro
°ld rX <- rY[Z] call foo
st rY[Z] <- rX pop ril

can be deleted. bop 10

Be careful of labels! push ri

Strength Reduction & Algebraic Simplification

Replace expensive operations with cheaper equivalents.

X *= 3 t=Xx+ Xx; X += t
1i rl <- 3 :>add rl <- ro ro
mul r@ <- ro rl add re <- rl ro

X *= 16 X = X << 4
imulg $16, %rax |:> salqg $4, %rax

Strength Reduction & Algebraic Simplification

Replace expensive operations with cheaper equivalents.

X *¥= 3 t = X + X; X +=

1i rl <- 3 :>add rl <- ro ro
mul re <- ro ril add r@ <- rl ro

X *= 16 X = X << 4
imulg $16, %rax |:> salqg $4, %rax

Machine Idioms

Hardware-specific alternatives.
>Smaller code (CISC).

o Faster hardware paths.

imulg $3, %rax |:> leaq 1(%rax,%rax,2), %rax
add $1, %rax

mov %rax, $0 I:> Xor %rax, %rax

Optimization Classification

Optimizations are classified by scope or increasing complexity:

1. Local: small blocks of code (“basic blocks”).
> Includes peephole optimizations.

2. “Global:” method bodies (“control flow graph”).

3. Inter-procedural: compilation unit.
o Crosses method boundaries.

Basic Blocks

Maximal sequence of IR instructions with:
°No jumps (except optionally at last instruction).
> No labels (except optionally at first instruction).

Control can only enter block through first instruction.
Control can only leave block through last instruction.

Therefore, if any instructions are executed, all are.

|[dentifying Basic Blocks

1. ldentify leaders (first instruction in each basic block).
o First instruction.

o Targets of branches (€ labeled instructions).
o Instructions following branches.

2. Block contains leader up to (but excluding) next leader.

Local Optimizations in Basic Blocks

Useful property: If any instructions are executed, all are.

For example, determine when values will be next used.
o Keep frequently used values in registers.
> Reuse registers holding “dead” values.

These two are weaker versions of global optimizations.
>So let’s talk about those instead.

Control Flow Graphs

Nodes: basic blocks.

Edge from B1 to B2 if:

o Conditional or unconditional
jump from B1 to B2.

°B2 follows B1 and B1 does
not end in conditional jump.

11 rl <- 1
11 r2 <- 1

}

mul rl <- rl ril
1i re <- 1
add r2 <- r2 reo
1i re <- 10
ble r2 10 L

I

1

Next Week...

Data-flow analysis.

