
Optimization Overview

But first…

Questions about code generation?

Optimization Overview
FOR REAL THIS TIME

Back-End Overview

AST

Intermediate
Code Generator

Target Code
Generator

Apply optimizations to any/all of these representations.

Intermediate Representations
Abbreviated IR (or IL for Intermediate Language).

Generally each compiler has its own.
◦ We basically use Cool Asm as our IR.

Advantages:
◦ Machine independent: one optimization for Cool and x86_64.

◦ Exposes more opportunities than AST.

Optimization Goals

1.Get the right answer.
◦ No, really. Get the right answer.

2. Get it quickly:
◦ Remove redundant work.

◦ Do the remaining work “better”.

Optimization Goals

1.Get the right answer.
◦ Or don’t bother with goal 2.

2. Get it quickly:
◦ Remove redundant work.

◦ Do the remaining work “better”.

“Better”:
◦ In fewer cycles.

◦ Using less power.

◦ With fewer instructions.

◦ Less network traffic.

◦ …

Sort Analogy
How is qsort implemented in practice?

1. Use quicksort for high-level sort.
◦ Low complexity (Remove redundant work).

2. Use insertion sort for base case.
◦ Small constant (Make remaining work fast).

We will follow a similar approach in our optimizing compiler.

Peephole Optimizations
1. Slide window (peephole)

over representation.

2. Pattern match and replace
with optimized code.

3. Repeat.

What can we do with this?

◦ Constant folding.

◦ Eliminate redundant ops.

◦ Strength reduction.

◦ Algebraic simplification.

◦ Apply machine idioms.

Constant Folding
Depth-first, post-order walk.

Match subtree and replace.

◦ E.g. binop with two
constants.

◦ E.g. if-expression with
constant predicate.

÷

+

4 6

2

Constant Folding
Depth-first, post-order walk.

Match subtree and replace.

◦ E.g. binop with two
constants.

◦ E.g. if-expression with
constant predicate.

÷

+

4 6

2

Constant Folding
Depth-first, post-order walk.

Match subtree and replace.

◦ E.g. binop with two
constants.

◦ E.g. if-expression with
constant predicate.

÷

4 6

210

Constant Folding
Depth-first, post-order walk.

Match subtree and replace.

◦ E.g. binop with two
constants.

◦ E.g. if-expression with
constant predicate.

÷

4 6

210

Constant Folding
Depth-first, post-order walk.

Match subtree and replace.

◦ E.g. binop with two
constants.

◦ E.g. if-expression with
constant predicate.

5

4 6

2+

Eliminating Redundant Ops
Many sequences, e.g.:

◦ pop rX; push rX

◦ push rX; pop rX

◦ ld rX <- rY[Z]
st rY[Z] <- rX

can be deleted.

One pass may enable
others.

…

push r0

push r1

call foo

pop r1

pop r0

push r0

push r1

call bar

pop r1

pop r0

…

Eliminating Redundant Ops
Many sequences, e.g.:

◦ pop rX; push rX

◦ push rX; pop rX

◦ ld rX <- rY[Z]
st rY[Z] <- rX

can be deleted.

One pass may enable
others.

…

push r0

push r1

call foo

pop r1

pop r0

push r0

push r1

call bar

pop r1

pop r0

…

Assumes bar
does not expect
r0 to have a
certain value.

Eliminating Redundant Ops
Many sequences, e.g.:

◦ pop rX; push rX

◦ push rX; pop rX

◦ ld rX <- rY[Z]
st rY[Z] <- rX

can be deleted.

Be careful of labels!

…

push r0

push r1

call foo

pop r1

pop r0

X: push r0

push r1

call bar

pop r1

pop r0

…

Strength Reduction & Algebraic Simplification
Replace expensive operations with cheaper equivalents.

imulq $16, %rax salq $4, %rax

li r1 <- 3
mul r0 <- r0 r1

add r1 <- r0 r0
add r0 <- r1 r0

x *= 3 t = x + x; x += t

x *= 16 x = x << 4

Strength Reduction & Algebraic Simplification
Replace expensive operations with cheaper equivalents.

imulq $16, %rax salq $4, %rax

li r1 <- 3
mul r0 <- r0 r1

add r1 <- r0 r0
add r0 <- r1 r0

x *= 3 t = x + x; x += t

x *= 16 x = x << 4

Saves 10
cycles!

Saves ??
cycles?

Machine Idioms
Hardware-specific alternatives.
◦ Smaller code (CISC).

◦ Faster hardware paths.

imulq $3, %rax
add $1, %rax

leaq 1(%rax,%rax,2), %rax

mov %rax, $0 xor %rax, %rax

Optimization Classification
Optimizations are classified by scope or increasing complexity:

1. Local: small blocks of code (“basic blocks”).
◦ Includes peephole optimizations.

2. “Global:” method bodies (“control flow graph”).

3. Inter-procedural: compilation unit.
◦ Crosses method boundaries.

Basic Blocks
Maximal sequence of IR instructions with:
◦ No jumps (except optionally at last instruction).

◦ No labels (except optionally at first instruction).

Control can only enter block through first instruction.

Control can only leave block through last instruction.

Therefore, if any instructions are executed, all are.

Identifying Basic Blocks

1. Identify leaders (first instruction in each basic block).
◦ First instruction.

◦ Targets of branches (⊆ labeled instructions).

◦ Instructions following branches.

2. Block contains leader up to (but excluding) next leader.

Local Optimizations in Basic Blocks
Useful property: If any instructions are executed, all are.

For example, determine when values will be next used.
◦ Keep frequently used values in registers.

◦ Reuse registers holding “dead” values.

These two are weaker versions of global optimizations.
◦ So let’s talk about those instead.

Control Flow Graphs
Nodes: basic blocks.

Edge from B1 to B2 if:

◦ Conditional or unconditional
jump from B1 to B2.

◦ B2 follows B1 and B1 does
not end in conditional jump.

li r1 <- 1
li r2 <- 1

L:
mul r1 <- r1 r1
li r0 <- 1
add r2 <- r2 r0
li r0 <- 10
ble r2 10 L

Next Week…

Data-flow analysis.

