
Processors,
Performance, and
Profiling

Architecture 101: 5-Stage Pipeline

PC

Registers

FP
A

LU

Memory

Fetch Decode Execute Memory Write-Back

Architecture 101

1. Fetch instruction from memory.

2. Decode instruction to get operation and registers.

3. Execute instruction.

4. Memory: load and store data.

5. Write-back result to registers.

Architecture 201
(Out-of-Order, Superscalar)

1. Fetch several instructions from 𝜇op-$, I$, L2-$, L3-$, mem…
◦ May cause page-fault if address not in memory.
◦ Predict whether branch changes next fetch address.

2. Decode and place in out-of-order queues.

3. Execute any ready instructions and place in re-order queue.
◦ Update register file(s) with result.

4. Memory: load from caches or memory; write to write-queue.

5. Write-back result to architecture register file.

Architecture 301
Multi-processors and Multi-threading
◦ Memory coherence and consistency.

◦ May need compiler to insert barriers.

Very Large Instruction Word (VLIW; e.g. Itanium)
◦ Several logical instructions packed into one.

SIMD / SIMT (e.g. GPUs)
◦ Many (usually 32 or 64) threads operate in lock-step.

◦ Compiler inserts checks for divergence.

Architecture 201
(Out-of-Order, Superscalar)

1. Fetch several instructions from 𝝁op-$, I-$, L2-$, L3-$, mem…
◦ May cause page-fault if address not in memory.
◦ Predict whether branch changes next fetch address.

2. Decode and place in out-of-order queues.

3. Execute any ready instructions and place in re-order queue.
◦ Update register file(s) with result.

4. Memory: load from caches or memory; write to write-queue.

5. Write-back result to architecture register file.

Cache Lines

Caches contain fixed-size lines of adjacent addresses.

◦ Must replace a complete line at a time.

◦ Fetches / loads across line boundaries may be slower.
◦ Slightly higher chance of a cache miss with two lines.

◦ Cool lines are 1-word long.

◦ Recent x86 (Haswell, Piledriver) use 64-byte lines.

Cache Associativity
Addresses mapped to subset
of lines of cache.
◦ N-Way Associativity:

number of lines that may
hold an address.

1-way: “Direct mapped”

1 row: “Fully associative”

Index Way 1 Way 2 … Way N

0

1 Line

2

…

Associativity

R
o

w
s

Size = Associativity * Rows * Line Width

Caches and Performance

COOL SIMULATOR

Fully-associative.

Joint I-$ and D-$.

Small (64 words).

No alignment concerns.

X86

Typically 4-way or 8-way.

L1: split I-$ and D-$.
L2: joint I-$ and D-$.

Size varies: 16kB → 8MB.
◦ L2 & up shared between cores

Multi-line instructions/data.

Caches and Performance

COOL SIMULATOR

Fully-associative.

Joint I-$ and D-$.

Small (64 words).

No alignment concerns.

X86

Typically 4-way or 8-way.

L1: split I-$ and D-$.
L2: joint I-$ and D-$.

Size varies: 16kB → 8MB.
◦ L2 & up shared between cores

Multi-line instructions/data.

Higher cost of
inlining and
unrolling.

Caches and Performance

COOL SIMULATOR

Fully-associative.

Joint I-$ and D-$.

Small (64 words).

No alignment concerns.

X86

Typically 4-way or 8-way.

L1: split I-$ and D-$.
L2: joint I-$ and D-$.

Size varies: 16kB → 8MB.
◦ L2 & up shared between cores

Multi-line instructions/data.

Caches and Performance

COOL SIMULATOR

Fully-associative.

Joint I-$ and D-$.

Small (64 words).

No alignment concerns.

X86

Typically 4-way or 8-way.

L1: split I-$ and D-$.
L2: joint I-$ and D-$.

Size varies: 16kB → 8MB.
◦ L2 & up shared between cores

Multi-line instructions/data.

1) Static: Optimize for exclusive access.
2) “Fat binary”: implement different time/space

tradeoffs (e.g. less inlining, deliberate stalls).
3) Dynamic: reactive JIT.

Caches and Performance

COOL

Fully-associative.

Joint I-$ and D-$.

Small (64 words).

No alignment concerns.

X86

Typically 4-way or 8-way.

L1: split I-$ and D-$.
L2: joint I-$ and D-$.

Size varies: 16kB → 8MB.
◦ L2 & up shared between cores

Multi-line instructions/data.

2-Byte align
1st instruction

in function.
Loops?

𝜇op Cache

x86 embeds a RISC-like processor inside a CISC processor.
◦ L1 cache holds CISC instructions.

◦𝜇op cache holds RISC instructions.

𝜇op details are typically not available.
◦ Implementation detail: may change between revisions.

◦ Expect tight loops to reside in 𝜇op.

“5”-Stage Pipeline

PC

Register File

FP
A

LU

Memory Hierarchy

Fetch Decode Execute Memory Write-Back

Static Branch Prediction

Prediction depends only on current instruction.
◦ E.g., “always not-taken”.

Cool simulator:
◦ “Backward taken, forward not-taken” for conditional jumps.

◦ Prefer calling via labels over calling via registers.
◦ Receiver class analysis, but without the inlining.

Dynamic Branch Prediction
Prediction depends on history of previous branches.
◦ All branches? Or just ones with this (hashed) address?

◦ How much history?
◦ 1 bit: predict what happened last time.

◦ 2+ bits: saturating counter or pattern detection.

Dynamic Branch Prediction
Prediction depends on history of previous branches.
◦ All branches? Or just ones with this (hashed) address?

◦ How much history?

In some cases: avoid branches with predicated moves.

cmpq $0, %r13
jz Label
addq %r15, %r14
Label:

movq %r14, t8
addq %r15, t8
cmpq $0, %r13
cmovz t8, %r14

Dynamic Branch Prediction
Prediction depends on history of previous branches.
◦ All branches? Or just ones with this (hashed) address?

◦ How much history?

In some cases: avoid branches with predicated moves.

cmpq $0, %r13
jz Label
idivq %r15, %r14
Label:

movq %r14, t8
idivq %r15, t8
cmpq $0, %r13
cmovz t8, %r14

Dynamic Branch Prediction
Prediction depends on history of previous branches.
◦ All branches? Or just ones with this (hashed) address?

◦ How much history?

In some cases: avoid branches with predicated moves.
◦ May cause false errors (null dereference, divide-by-zero).

◦ May increase register pressure: spilling.

◦ May increase instruction count: no benefit if prediction is
correct.

Out-of-Order Execution
Goal: Run instructions as
soon as operands and
resources are ready.

Pool pending instructions.

Interrupt safety:
◦ Re-order loads, stores, etc.

before committing.

A
LU

R
eservatio

n

Statio
n

Execute

Store Queue

Re-order
Buffer

Memory Hierarchy

Register File

Memory

Out-of-Order Performance

Resolves many data dependencies automatically.
◦ E.g., can overlap independent slow operations.

However,
◦ Reservation stations have limited size.

◦ After mis-predicted jump, pipeline is partially flushed.

Taking Advantage of OOO Processors
Group data-independent instructions.
◦ OOO processor will issue these in parallel.

Issue slow operations (memory loads, floating points) early.
◦ Gives them more time to complete before needed.

◦ Single-threaded stores are handled asynchronously (i.e. fast).

More important at tops of functions, rarely used branches.
◦ E.g., exception handling code.

Too Many Questions

“Inlining may cause cache misses.”

“Instructions across cache lines may cause extra misses.”

“Predicated moves may reduce branch mis-predictions.”

“Predicated moves may increase register pressure.”

“Independent instructions may improve throughput.”

“Linear scan allocation may increase spilling.”

Profiling for Fun and Profit

The rules of Optimization Club
1. Get the right answer.

2. Make the common case fast (Amdahl’s Law).
◦ E.g., arrange for more cache hits by not unrolling.

3. Make the common case less common (Johnstone’s Law).
◦ E.g., arrange for fewer cache accesses by removing instructions.

We need to know what’s slow before we can fix it.

Cool Simulator Profiler
> ./cool --asm hello-world.cl

> ./cool --profile hello-world.cl-asm

PROFILE: instructions = 83 @ 1 => 83

PROFILE: pushes and pops = 23 @ 1 => 23

PROFILE: cache hits = 17 @ 0 => 0

PROFILE: cache misses = 560 @ 100 => 56000

PROFILE: branch predictions = 0 @ 0 => 0

PROFILE: branch mispredictions = 8 @ 20 => 160

PROFILE: multiplications = 0 @ 10 => 0

PROFILE: divisions = 0 @ 40 => 0

PROFILE: system calls = 2 @ 1000 => 2000

CYCLES: 58266

Cool Simulator Profiler
> ./cool --asm hello-world.cl

> ./cool --profile hello-world.cl-asm

PROFILE: instructions = 83 @ 1 => 83

PROFILE: pushes and pops = 23 @ 1 => 23

PROFILE: cache hits = 17 @ 0 => 0

PROFILE: cache misses = 560 @ 100 => 56000

PROFILE: branch predictions = 0 @ 0 => 0

PROFILE: branch mispredictions = 8 @ 20 => 160

PROFILE: multiplications = 0 @ 10 => 0

PROFILE: divisions = 0 @ 40 => 0

PROFILE: system calls = 2 @ 1000 => 2000

CYCLES: 58266

Cool Simulator Profiler
Tells you everything that costs cycles.

Find dominant cost and reduce it.
◦ Cache misses were 96% of runtime.

◦ Push/pop were second: less than 4%.

Cool Simulator Profiler
Tells you everything that costs cycles.

Find dominant cost and reduce it.
◦ Cache misses were 96% of runtime.

◦ Push/pop were second: less than 4%.

Fix this.

Not this.

Cool Simulator Profiler
Tells you everything that costs cycles.

Find dominant cost and reduce it.
◦ Cache misses were 96% of runtime.

◦ Push/pop were second: less than 4%.

But first, profile many benchmarks.
◦ Want to improve compiler, not a specific benchmark.

◦ Ideally, benchmarks should represent real-world programs.

Function Profiling in Cool

The debug instruction reports current cycle.
◦ Insert debug sp (or similar) around loops, functions, etc.

◦ Note: debug uses a cycle and a cache line!

DEBUG: 357: at time 25, fp = 1999999999 (last set at time 4 by instr at line 130)
Hello, world.
DEBUG: 391: at time 83, fp = 1999999997 (last set at time 78 by instr at line 385)

Linux perf
> ./cool --x86 hello-world.cl
> gcc hello-world.s
> perf stat -r 100 -- ./a.out
Performance counter stats for './a.out' (100 runs):

0.419577 task-clock # 0.702 CPUs utilized (+- 2.31%)
2 context-switches # 0.005 M/sec (+- 1.52%)
0 CPU-migrations # 0.000 M/sec (+-100.00%)

135 page-faults # 0.322 M/sec (+- 0.02%)
1,003,260 cycles # 2.391 GHz (+- 2.69%)
738,159 stalled-cycles-frontend # 73.58% frontend cycles idle (+- 2.78%)
610,462 stalled-cycles-backend # 60.85% backend cycles idle (+- 3.20%)
586,118 instructions # 0.58 insns per cycle

1.26 stalled cycles per insn (+- 0.11%)
113,068 branches # 269.480 M/sec (+- 0.10%)

<not counted> branch-misses

0.000597343 seconds time elapsed (+- 2.10%)

Linux perf
> ./cool --x86 hello-world.cl
> gcc hello-world.s
> perf stat -r 100 -- ./a.out
Performance counter stats for './a.out' (100 runs):

0.419577 task-clock # 0.702 CPUs utilized (+- 2.31%)
2 context-switches # 0.005 M/sec (+- 1.52%)
0 CPU-migrations # 0.000 M/sec (+-100.00%)

135 page-faults # 0.322 M/sec (+- 0.02%)
1,003,260 cycles # 2.391 GHz (+- 2.69%)
738,159 stalled-cycles-frontend # 73.58% frontend cycles idle (+- 2.78%)
610,462 stalled-cycles-backend # 60.85% backend cycles idle (+- 3.20%)
586,118 instructions # 0.58 insns per cycle

1.26 stalled cycles per insn (+- 0.11%)
113,068 branches # 269.480 M/sec (+- 0.10%)

<not counted> branch-misses

0.000597343 seconds time elapsed (+- 2.10%)

Linux perf
> ./cool --x86 hello-world.cl
> gcc hello-world.s
> perf stat -r 100 -- ./a.out
Performance counter stats for './a.out' (100 runs):

0.419577 task-clock # 0.702 CPUs utilized (+- 2.31%)
2 context-switches # 0.005 M/sec (+- 1.52%)
0 CPU-migrations # 0.000 M/sec (+-100.00%)

135 page-faults # 0.322 M/sec (+- 0.02%)
1,003,260 cycles # 2.391 GHz (+- 2.69%)
738,159 stalled-cycles-frontend # 73.58% frontend cycles idle (+- 2.78%)
610,462 stalled-cycles-backend # 60.85% backend cycles idle (+- 3.20%)
586,118 instructions # 0.58 insns per cycle

1.26 stalled cycles per insn (+- 0.11%)
113,068 branches # 269.480 M/sec (+- 0.10%)

<not counted> branch-misses

0.000597343 seconds time elapsed (+- 2.10%)

?

Linux perf
> ./cool --x86 hello-world.cl
> gcc hello-world.s
> perf stat -r 100 -- ./a.out
Performance counter stats for './a.out' (100 runs):

0.419577 task-clock # 0.702 CPUs utilized (+- 2.31%)
2 context-switches # 0.005 M/sec (+- 1.52%)
0 CPU-migrations # 0.000 M/sec (+-100.00%)

135 page-faults # 0.322 M/sec (+- 0.02%)
1,003,260 cycles # 2.391 GHz (+- 2.69%)
738,159 stalled-cycles-frontend # 73.58% frontend cycles idle (+- 2.78%)
610,462 stalled-cycles-backend # 60.85% backend cycles idle (+- 3.20%)
586,118 instructions # 0.58 insns per cycle

1.26 stalled cycles per insn (+- 0.11%)
113,068 branches # 269.480 M/sec (+- 0.10%)

<not counted> branch-misses

0.000597343 seconds time elapsed (+- 2.10%)

This would have
been nice…

Linux perf
> perf list
> perf stat -r 100 -e cycles,instructions,branches,branch-misses -- ./a.out
Performance counter stats for './a.out' (100 runs):

964,559 cycles # 0.000 GHz (+- 1.57%)
564,539 instructions # 0.59 insns per cycle (+- 0.12%)
109,185 branches (+- 0.11%)

5,357 branch-misses # 4.91% of all branches (+- 1.13%)

0.000500748 seconds time elapsed (+- 3.18%)
> perf stat -r 100 -e cycles,instructions,cache-references,cache-misses -- ./a.out
Performance counter stats for './a.out' (100 runs):

993,489 cycles # 0.000 GHz (+- 1.40%)
560,510 instructions # 0.56 insns per cycle (+- 0.12%)
11,281 cache-references (+- 0.43%)
2,858 cache-misses # 25.337 % of all cache refs (+- 4.62%)

0.000567105 seconds time elapsed (+- 2.82%)

