Single Static Assignment
and Unboxing




Compiler Temporaries

Code Generation
°eq + e,: Store e; while computing e,.

Common Sub-Expression Elimination
o Store sub-expression for reuse later.

Loop Invariants
> Compute and store expression outside of loop.



Storage Locations

Memory Registers
°Pro: plentiful. °Pro: very fast.
> Con: slow. > Con: only 8 (16) available.
> Con: must update indices (or °Con: reuse limits code
waste space) after code motion.
elimination.



Storage Locations

Memory Registers
°Pro: plentiful. °Pro: very fast.
> Con: slow. > Con: only 8 (16) available.
> Con: must update indices (or °Con: reuse limits code
waste space) after code motion.
elimination.

We want it all: no reuse, no indexing, and plentiful storage.
> Also, fast would be nice.



Static Single Assignment (SSA)

Add “temporary locations” to intermediate representation.
° Infinite number (effectively) of these.

> Each location assigned exactly once.
> Implement these as registers later (register allocation).

3-Address IR: x becomes x{, x5, ...

For Cool ASM IR: add registers t0, t1, ...



SSA and a Basic Block

mul rl <- rl1 rl
1i r2 <- 1

add r@ <- ro r2
add re <- roe ril



SSA and a Basic Block

mul rl <- rl1 rl mul t1 <- rl ri
1i r2 <- 1 11 t2 <- 1

add r@ <- ro r2 add t3 <- ro t2
add re <- roe ril add t4 <- t3 t1



SSA and a Control Flow Graph (CFG)

!

L: mul rl <- rl rl
11 r2 <- 1
add re <- re r2
1i r2 <- 10

ble ro r2 L
|

1
D




SSA and a Control Flow Graph (CFG)

L: mul rf'<— rl rl L: mul tfr<— rl rl
1i r2 <- 1 11 t2 <- 1
add r@ <- ro r‘zq add t3 <- ro t2
1i r2 <- 10 1i t4 <- 10
ble ro r2 L ble t3 t4 L
i i



SSA and a Control Flow Graph (CFG)

! !

L: mul rl This is no longer : mul t1 <- rl ril

11 r2 being updated!
sid rRNP T - (O
ble r@ r2 L ble t3 t4 L

i i



¢d-Functions

In general, one logical value |
may reach a basic block L: t5 <- ¢(re,t3)
along more than one path. mul t1 <- rl1 ril

Insert a ¢-function to 11 t2 <- 1
“merge” those values. add t3 <- t5 t2
Not 3-address: one ii t4 <- 10
argument per incoming path. e t3| t4 L

}



Converting CFG to SSA Form

General Algorithm:

1. Find dominators for every CFG node.
o Every path to node N goes through its dominators.

2. Compute dominance frontiers for every CFG node.
> Set of nodes just barely not dominated by N.

3. Place ¢-functions at frontiers.

4. Rename assignments and subsequent uses.



Converting CFG to SSA Form

General Algorithm:
> Required if your language uses gotos.
> Algorithmically efficient (data-flow, plus two tree walks).

Dominators:
> Also useful for identifying natural loops (gotos again).



Generating SSA Form Directly




Generating SSA Form Directly

Most
expressions:
store result in
temporary.




Generating SSA Form Directly

Control-flow:
insert ¢-function
for assignments

in body.




SSA Code Generation of Control-Flow

(*local x*)
if b then
X <-1
else

X <= 2
fi




SSA Code Generation of Control-Flow

brz t1 L1 L1:

(*local x*)| ; true branch ; false branch
if b then call Int..new call Int..new
X <-1 mov t2 <- ril mov t4 <- rl

else 11 t3 <- 1 1i t5 <- 2
X <- 2 st t2[2] <- t3 st t4[2] <- t5
fi jmp L2 L2:
t6 <- ¢p(t2,t4)




SSA Code Generation of Control-Flow

1f and case expressions:
> Also insert ¢-functions for the expression value.
°oX <- 1f b then new Int else new String fi

while expressions:
°|nsert ¢-function at top for variables used then modified.
cwhile x < 10 loop x <- x + 1 pool



Auto-Unboxing




Boxed Types

All Cool values are objects.

> Fewer special cases in language.
> Handle for any value of any type can be stored in a (integer) register.
> No need for void methods: everything satisfies type Object.

o Simpler generic data structures and methods.
°Java7 has 9 System.out.print() methods.
°cjava.util.List holds Integers, but not ints.



Unboxed Types

Many uses of Int (or Bool or String) do not use objects.
> Paying for flexibility we do not use!

_x+y | Instructions

Unboxed 1 ALU

Boxed 1 ALU + 3 Memory +
1 constructor call”

We want to work with raw values wherever possible.



Unboxing: Intuition

Define type UnboxedInt
° Integer literals have type Unboxedint

o Instruction box1i : UnboxedInt — Int
o Instruction unboxi : Int = Unboxedint
> Arithmetic operators apply to UnboxedInt

X + Yy = box(unbox(x) + unbox(y))



(@a+b)+c




(@a+b)+c

unboxi tl1 <- r2
unboxli t2 <- r3
add t3 <- t1 t2
boxi t4 <- t3

unboxli t5 <- t4
unboxli t6 <- r4
add t7 <- t5 t6
boxi t8 <- r7




(a+b)+c

unboxi tl1 <- r2
unboxi t2 <- r3 Peephole optimization:

add t3 <- t1 t2 Can save constructor
boxi t4 <- t3
unboxi t5 <- t4
unboxi t6 <- r4
add t7 <- t5 t6
boxi t8 <- r7

call, plus 2 memory
ops.




(@a+b)+c

unboxi tl1 <- r2
unboxli t2 <- r3
add t3 <- t1 t2
mov t5 <- t3

unboxli t6 <- r4
add t7 <- t5 t6
boxi t8 <- r7

Was that safe?



Something a Little More Complicated

let 1 : Int <- 1 1n
while i < 10 loop {
X <- X * 2;
1 <-1 + 1;
} pool;
X



Something a Little More Complicated

1i t1 <- 1 unboxi t7 <- reo add t17 <- t13 ti16
boxi t2 <- t1 1i t8 <- 2 boxi t18 <- t17
L1: boxi t9 <- t8 jmp L1

unboxi t3 <- t2 unboxi t10 <- t9 L2:

1i t4 <- 10 mul t11 <- t7 t10 mov rl <- t12

boxi t5 <- t4 boxi t12 <- t11

unboxi t6 <- t5 unboxi t13 <- t2

ble t6 t3 L2 1i t14 <- 1

boxi t15 <- t14
unboxi tl1l6 <- t15



Something a Little More Complicated

1i t1 <- 1

boxi t2 <- t1l

L1:

t19 <- ¢(t2, ti18)
t20 <- ¢(ro, ti12)
unboxi t3 <- t19
1i t4 <- 10

boxi t5 <- t4
unboxi t6 <- t5
ble t6 t3 L2

unboxi t7 <- t20
11 t8 <- 2

boxi t9 <- t8
unboxi t10 <- t9
mul t11 <- t7 t10
boxi t12 <- t11
unboxi tl1l3 <- t2
1i t14 <- 1

boxi t15 <- t14
unboxi tl1l6 <- t15

add t17 <- t13 ti16
boxi t18 <- t17
jmp L1

L2:

mov rl <- t12



Something a Little More Complicated

1i t1 <- 1 unboxi t7 <- t20 add t17 <- t13 tl6
boxi t2 <- t1 1i t8 <- 2 boxi t18 <- t17
L1: boxi t9 <- t8 jmp L1

t19 <- ¢(t2, ti18) unboxi t10 <- t9 L2:
t20 <- ¢(ro, t12) mul t11 <- t7 t1@ mov rl <- t12

unboxi t3 <- t19 boxi t12 <- t11
1i t4 <- 10 unboxi t13 <- t2
boxi t5 <- t4 1i t14 <- 1
unboxi t6 <- t5 boxi t15 <- ti14
ble t6 t3 L2 unboxi tl1l6 <- t15




Something a Little More Complicated

1i t1 <- 1 unboxi t7 <- t20 add t17 <- t13 t16
1 1i t8 <- 2 1 <- t17
mov t16

mul t1l1l <- t7 t10 L2:
boxi tl12 <- tl11 mov rl <- t12
unboxi t13 <- t2

unboxi t3 <=

1i t4 <- 10 11 t14 <- 1
mov t6 <- t4 mov tl6 <- tl14
ble t6 t3 L2



A Data-Flow for Unboxing

Direction: Backward Meet operator: Diamond
T Unknown
used Value is used (arithmetic or method call)
converted Value is eventually converted.
1 Value is used and converted.




Something a Little More Complicated

1i t1 <- 1 unboxi t7 <- t20 add t17 <- t13 t16
1 1i t8 <- 2 1 <- t17
mov t16

mul t1l1l <- t7 t10 L2:
boxi tl12 <- tl11 mov rl <- t12
unboxi t13 <- t2

unboxi t3 <=

1i t4 <- 10 11 t14 <- 1
mov t6 <- t4 mov tl6 <- tl14
ble t6 t3 L2



Something a Little More Complicated

1i t1 <- 1 unboxi t7 <- t20 add t17 <- t13 t16
mov t2 <- t1l 1i t8 <- 2 mov tl8 <- t17

L1: mov t10 <- t8 jmp L1

t19 <- ¢(t2, ti18) mul tl1ll1l <- t7 tle L2:

t20 <- ¢(ro, ti12) boxi t12 <- t11 mov rl <- tl12

mov t3 <- t19 unboxi t13 <- t2

1li t4 <- 10 1i t14 <- 1

mov t6 <- t4 mov tl6 <- t14

ble t6 t3 L2



Something a Little More Complicated

1i t1 <- 1 unboxi t7
mov t2 <- t1 1
L1:

add t17 <- t13 tl6
2 mov t18 <- t17

mov tl1lO <- t8 jmp L1

; t18) mul t11 <- t7 tl1e L2:

t20/<~ ¢(ro, [t12}—boxi|t12) <- t11 mov rl <-|t12

mov t3 <- t19 oiTboXT—ti3—<=1t2
1i t4 <- 10 1i t14 <- 1

mov t6 <- t4 mov tl1l6 <- tl14
ble t6 t3 L2



Unboxing Summary

1. Insert type-casts to represent boxing and unboxing.

2. Use data-flow analysis to identify wasteful boxing.
o Argument values must be boxed (for now).

o Return values must be boxed (for now).
o Self objects must be boxed.



Dominance

X dominatesY (X = Y)
o |f every path to Y goes through X.

°Note: X = X

X strictly dominates Y (X > Y)
olf X =Y, butX #Y.

Find dominators with data-flow algorithm
°(Dragon Book, p658).



Dominance Trees




Dominance and ¢-Functions

Place ¢-function at node N if DF(1) = {1}
2 non-empty CFG paths DF(2) = {7}
define v,

> And both paths meet at N. DF(3) = 16}
DF(4) = {6}

Note: ¢-function defines v. DF(5) = {1,7}

l.e., place ¢-function along DF(6) = {7}

dominance frontier. DF(7) = {}




