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ABSTRACT

General purpose GPU (GPGPU) programming frameworks
such as OpenCL and CUDA allow running individual com-
putation kernels sequentially on a device. However, in some
cases it is possible to utilize device resources more efficiently
by running kernels concurrently. This raises questions about
load balancing and resource allocation that have not previ-
ously warranted investigation. For example, what kernel
characteristics impact the optimal partitioning of resources
among concurrently executing kernels? Current frameworks
do not provide the ability to easily run kernels concurrently
with fine-grained and dynamic control over resource parti-
tioning. We present KernelMerge, a kernel scheduler that
runs two OpenCL kernels concurrently on one device. Ker-
nelMerge furnishes a number of settings that can be used
to survey concurrent or single kernel configurations, and to
investigate how kernels interact and influence each other,
or themselves. KernelMerge provides a concurrent kernel
scheduler compatible with the OpenCL API.

We present an argument on the benefits of running kernels
concurrently. We demonstrate how to use KernelMerge to
increase throughput for two kernels that efficiently use de-
vice resources when run concurrently, and we establish that
some kernels show worse performance when running con-
currently. We also outline a method for using KernelMerge
to investigate how concurrent kernels influence each other,
with the goal of predicting runtimes for concurrent execution
from individual kernel runtimes. Finally, we suggest GPU
architectural changes that would improve such concurrent
schedulers in the future.

1. INTRODUCTION

General purpose GPU (GPGPU) computing capitalizes
on the massively parallel resources of a modern GPU to
enable high compute throughput. Programming languages
such as CUDA and OpenCL have provided application de-
velopers with a familiar environment with which to exploit
GPU capabilities. However, there remain barriers to mass
deployment of GPGPU technology, one of which is the in-
ability to easily run multiple applications concurrently. In
addition, because of architectural differences among devices,
an optimization for one GPU may result in worse utilization
on other GPUs. Even highly performance-optimized ker-
nels may have memory- or compute-bound behavior, leav-
ing some resources underutilized. We propose that running
another kernel concurrently with this first kernel can take
advantage of these underutilized resources, improving over-
all system throughput when many kernels are available to

run. Concurrent execution provides the additional benefit of
exploiting the entire device, even when executing less than
fully-optimized kernels. This eases the programmer burden,
since optimization requires time that may be profitably re-
allocated.

Current GPGPU frameworks do not have the ability to
run concurrent kernels with fine-grained control over re-
sources available to each kernel, and we argue that such
a feature will be increasingly necessary as the popularity of
GPU computing grows. In this paper, we present our argu-
ment and describe KernelMerge, a prototype kernel sched-
uler that has this ability. We demonstrate a case study using
KernelMerge to find the optimal resource allocation for two
kernels running simultaneously, and we show that a naive
approach to this static assignment can lead to a degrada-
tion in performance over running the kernels sequentially.

GPGPU code can provide tremendous speed increases over
multicore CPUs for computational work. However, the na-
ture of GPU architectural designs can lead to underutiliza-
tion of resources: GPU kernels can either saturate the com-
putational units on the device (the applications are compute
bound), or they can saturate the available memory band-
width (they are bandwidth bound). Application developers
are cautioned to attempt to balance these two concerns so
that a GPU kernel performs most efficiently, but this opti-
mization can be tedious and in many cases algorithms can-
not be rewritten to balance computation and memory band-
width equally [1,5]. Figure 1 shows an example of a com-
pute bound kernel. To generate the figure, both the GPU
memory clock and the GPU processor clock were indepen-
dently adjusted for a Merge Sort benchmark kernel, which
uses shared memory to decrease the number of global mem-
ory writes, leading to compute-bound behavior. As the fig-
ure shows, changing the memory clock frequency does not
change the runtime, but changing the processor clock fre-
quency does. In other words, the kernel is compute bound.
Figure 2 shows an example of a bandwidth bound kernel,
Vector Add. In contrast to Figure 1, the bandwidth bound
kernel is affected by the memory clock frequency adjust-
ments, and not the processor clock adjustments.

When a compute bound or bandwidth bound kernel runs
alone on the GPU, it may not fully utilize the resources that
the GPU has to offer. In the cases where it does not realize
the ideal utilization, our goal is to change the ratio of com-
pute instructions to memory instructions so that the device
is fully utilized. Specifically, when a compute bound kernel
runs, the memory controllers may be idle while waiting for
the computational units, and when a bandwidth bound ker-
nel is running, ALUs and other computational circuits may
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Figure 1: Merge Sort: a compute bound example.
The horizontal axis shows a sweep of the GPU mem-
ory clock, which does not change the kernel running
time. The depth axis shows a sweep of the GPU
processor clock, and as the frequency is lowered, the
running time is significantly increased.

be forced to wait for memory loads or stores. The premise
for this work is that it is possible to increase utilization of the
entire device by judiciously running multiple concurrent ker-
nels that will together utilize the available resources. Using
KernelMerge we saw up to 18% speedup for two concurrent
kernels over the time to run the same kernels sequentially.

2. KERNELMERGE

2.1 Overview

The goal of KernelMerge is to enable concurrent kernel
execution on GPUs, and to provide application developers
and GPGPU researchers a set of knobs to change scheduler
parameters. Consequently, KernelMerge can be used to tune
performance when running multiple kernels simultaneously
(e.g., to maximize kernel throughput), and as a platform
for research into concurrent kernel scheduling. For example,
KernelMerge can set the total number of workgroups run-
ning on a GPU, and can set a fixed number of workgroups
per kernel in order to dedicate a percentage of resources to
one or both kernels. By sweeping through these values and
capturing runtimes (which KernelMerge provides), develop-
ers can determine the best parameters for their kernels, or
researchers can see trends that may allow runtime predic-
tions.

KernelMerge is a software scheduler, built in C++ and
OpenCL for the Linux platform, that meets the need for
simultaneous kernel execution on GPUs without overly bur-
dening application developers with significant code rewrites.
The C++ code “hijacks” the OpenCL runtime, providing its
own implementation of many OpenCL API calls. For ex-
ample, a custom implementation of c1EnqueueNDRangeKer-
nel, which dispatches kernels to the device, uses the current
scheduling algorithm to determine when to invoke the ker-
nel instead of the default OpenCL FIFO queue. The call-
ing code is unchanged, using the same API call with the
same arguments but gaining the new functionality. In fact
most host code can take advantage of the scheduler with no
changes save a single additional #include declaration.

KernelMerge includes additional features that are of in-

Figure 2: Vector Add: a memory bandwidth bound
example. The horizontal axis shows a sweep of the
GPU memory clock, and as the frequency is lowered,
the kernel running time increases. The depth axis
shows a sweep of the GPU processor clock, which
does not affect the running time.

terest to GPGPU developers and researchers. It has the
ability to determine the maximum number of workgroups of
two kernels that will run at once on a device, which can in-
fluence the partitioning scheme that the scheduler uses, and
can also be useful when analyzing performance or algorithm
design.

We envision KernelMerge evolving from its current form
as mainly a research tool into a robust scheduler that could
be implemented by an operating system for high-throughput
GPGPU scheduling. We developed KernelMerge to allow
us to run independent OpenCL kernels simultaneously on
a single OpenCL-capable device. KernelMerge also has the
ability to run single kernels by themselves, which allows mea-
surement of scheduler overhead and also enables using the
scheduler settings to investigate how a single kernel behaves.

At the highest level, KernelMerge combines two invoca-
tions of the OpenCL enqueueNDRangeKernel (one from each
application wishing to run a kernel) into a single kernel
launch that consists of the scheduler itself. In other words,
as far as the GPU is concerned, there is a single kernel run-
ning on the device. Before launching the scheduler kernel,
the scheduler passes the individual kernel parameters, and
buffer, workgroup, and workitem information to the device,
which the scheduler uses to run the individual kernels on the
device.

The scheduler creates a parametrically defined number
of “scheduler workgroups,” that the device sees as a single
set of workgroups for the kernel. The scheduler then dis-
patches a workgroup (a “kernel workgroup”) from the indi-
vidual kernels to each scheduler workgroups. There are two
main scheduling algorithms that we have developed: work
stealing and partitioning by kernel, described in Section 2.2.
The scheduler workgroups execute their assigned kernels as
if they were the assigned kernel workgroup, using a tech-
nique we call “spoofing.”

OpenCL kernels rely on a set of IDs to determine their
role in a kernel algorithm. Because a kernel workgroup
can get launched into any scheduler workgroup, the real
global, workgroup, and workitem IDs will not correspond to
the original IDs that the kernel developer had designated.



| Function

get_global_id()
get_global size()
get_group_id()
get_local_id()
get_local_size()
get_num_groups|()

| Returns |

The unique global work-item ID
The number of global work-items
The work-group ID

The unique local work-item ID

The number of local work-items
The number of work-groups that
will execute a kernel

Table 1: Workitem and workgroup identification
available to a running OpenCL kernel.

Therefore, when the scheduler dispatches the kernel work-
groups into the scheduler workgroups, it must “spoof” the
IDs so that the kernel workgroup sees the correct values.
One benefit to the spoofing is that the technique transpar-
ently allows us to concurrently schedule a kernel that uses a
linear workgroup with another that uses a two-dimensional
workgroup. This spoofing is responsible for a significant por-
tion of the scheduler overhead, as discussed in Section 2.4.
Table 1 shows the ID information that the scheduler spoofs.

Once the spoofing is established, the scheduler “dispatches’
the workgroups which carry out the work they have been as-
signed. The scheduler continues to partition out the work
until no work remains, at which point the scheduler (and
thus the kernel that the device sees) completes.

The scheduler collects runtime data for the scheduler ker-
nel, and can report on the runtime for the overall kernel.
Unfortunately, because the GPU sees the scheduler as a sin-
gle monolithic kernel, the scheduler cannot obtain runtimes
for the individual kernels.

2.2 Scheduling Algorithms

There are two different scheduling algorithms that Ker-
nelMerge utilizes. The first is a round-robin work-stealing
algorithm that assigns work from each kernel on a first-come,
first-served basis. The second algorithm assigns a fixed per-
centage of workgroups to each individual kernel.

Figure 3 shows a graphical representation of the work-
stealing algorithm on the left, and the static assignment
of a fixed percentage of scheduler workgroups to each ker-
nel on the right. For the work-stealing algorithm, Kernel
workgroups are assigned alternating locations in a queue.
If there are more workgroups of one kernel, the extra work-
groups occupy consecutive positions at the end of the queue.
Scheduler workgroups are assigned the kernel workgroups in
a first-come, first-served fashion, so that at the beginning
half the scheduler workgroups are running one kernel and
the other half are running the other kernel. As each sched-
uler workgroup finishes, it is re-assigned more work from
the head of the queue. With this algorithm, the allocation
of resources to each kernel is not fixed, as it depends on
the run time of each kernel. Once one kernel has finished
running, all of the scheduler workgroups will be running the
remaining kernel workgroups until it, too, completes.

In the partitioning algorithm, when a scheduler workgroup
finishes, it is only reassigned work from one kernel. This
ensures that the percentage of device resources assigned to
each kernel remains fixed. This algorithm runs as few as one
workgroup of the first kernel while dedicating all remaining
device resources to workgroups of the second kernel (and
vice-versa). This ability is one of the most powerful settings
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Figure 3: Work-stealing —vs— partitioning. The
black boxes represent one kernel and the white
boxes represent the other. In (b), one-fourth of
the available scheduler workgroups are assigned
the short-running kernel (1,3,5), and the remain-
ing scheduler workgroups are assigned to the long-
running kernel. As scheduler workgroups finish,
work is replaced from their assigned kernel.

available to KernelMerge, allowing high precision tuning of
device resources assigned to each kernel. For example, if
a highly memory-bound kernel is run concurrently with a
highly compute-bound kernel, the percentage of device re-
sources can be adjusted so that the memory-bound kernel
is assigned just enough such that it is barely saturating the
memory system, and the rest of the resources can be ded-
icated to running the compute bound kernel, maximizing
throughput for both kernels.

2.3 Results

Figure 4 shows a comparison between pairs of kernels that
were run sequentially and were also run concurrently using
KernelMerge. The figure shows that 39% of the paired ker-
nels showed a speedup when run concurrently. However,
naively scheduling kernels to run together can be highly
detrimental; in some cases running two kernels concurrently
leads to over 3z slowdown. These results provide a further
motivation for the use of KernelMerge as a research tool:
being able to predict when two kernels will positively or
negatively affect the concurrent runtime is non-trivial. The
settings provided within KernelMerge have the potential to
help identify general conditions that result in either benefi-
cial or adverse concurrent kernel parings, which can in turn
lead to the ability to predict runtimes and therefore make
informed decisions about whether or not to run kernels con-
currently. We defer the results of the partitioning algorithm
to section 3 where we show a case study using this algorithm.

2.4 Limitations and Runtime Overhead

As with any runtime scheduler, there are overhead costs
to running kernels with KernelMerge. Figure 5 shows the
overhead of running a set of kernels individually and then
from within KernelMerge. The runtime overhead can be
broken down into the following components

1. Processing a data structure in global memory to se-
lect which requested kernel workgroup to run, and to
ensure that each such workgroup is run exactly once.

2. Computing the translation from the actual workitem
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Figure 4: Merged runtimes compared to sequential
runtimes. In this figure, pairs of OpenCL kernels
were run concurrently using KernelMerge and com-
pared to the time to run the pair sequentially. 39%
of the pairs ran faster than they would run sequen-
tially. However, one pair ran over 3z slower than
the sequential runs, indicating that naively schedul-
ing kernels together could lead to poor performance.
Not all combinations of the seven benchmark kernels
run together because some applications only contain
a single kernel invocation.

IDs to the IDs needed for the selected workgroup (i.e.,
spoofing).

3. Additional control flow necessary because the compute
unit ID (i.e., the ID differentiating the groups of cores)
is not accessible through the API.

The complexity of the scheduler along with the fact that
every potentially schedulable kernel is included in a single
kernel combine to increase the kernel’s register usage. This
reduces the number of workgroups that may simultaneously
occupy the device, even if only a single kernel is actually
scheduled, due to limitations on the number of available
registers on the device. Similarly, the number of concur-
rent workgroups is limited by the available shared memory;
if any schedulable kernel uses shared memory, all schedu-
lable kernels are limited by it, even if no kernel that uses
shared memory is actually scheduled.

One final limitation of the KernelMerge approach affects
the use of barriers within kernels. If two kernels that use
different total numbers of workitems are scheduled, the un-
used workitems must be disabled. If the kernel with the
smaller workgroup uses a barrier, the disabled workitems
will never execute the barrier, causing the entire workgroup
to deadlock.

2.5 Suggested GPU Architecture Changes

Many of the limitations discussed above arise because to-
day’s GPUs are built on the assumption that a single kernel
runs at a time. We recommend that future GPU architec-
tures explicitly support concurrent execution of independent
kernels at workgroup granularity. We believe that imple-
menting the scheduler in software remains the most appro-
priate and flexible method and that the concerns from the
previous subsection can be relieved through relatively sim-

Figure 5: KernelMerge overhead. Overhead does
not affect all kernels the same. Short running ker-
nels that contain a large number of kernel work-
groups are adversely affected (e.g., Bitonic Sort).

ple hardware changes. First, allowing the registers used to
determine workgroup IDs to be written would eliminate the
need for spoofing. Second, there are resources that need to
be allocated per workgroup, such as local memory and bar-
riers. For instance, because workgroups of different kernels
may contain different numbers of workitems, the hardware
must allow the scheduler to specify to the barriers how many
workitems to expect. Third, exposing the compute unit
ID through the API would eliminate extra control flow and
would expand the space of possible scheduling algorithms.
For instance, a scheduler could assign all instances of a ker-
nel to a particular compute unit or set of compute units.

Currently, KernelMerge incurs significant overhead be-
cause of the necessity of working around hardware limita-
tions to multiple kernel execution. The minimal hardware
changes we suggest would enable easier creation of sched-
ulers that implement multiple kernel execution we have pre-
sented in this paper.

3. CASESTUDY: DETERMINING OPTIMAL
WORKGROUP BALANCE

We now show how KernelMerge can be used to find the
optimal workgroup partitioning for concurrent kernels. Sec-
tion 2.2 described the KernelMerge scheduling algorithm
whereby each kernel is given a set number of workgroups, out
of the total workgroups available (determined by a helper
application) for the kernel pair. In order to find the min-
imal runtime for each kernel pair, we wrote a script that
sweeps through all workgroup combinations for each pair,
and runs the scheduler accordingly. We also ran each kernel
pair sequentially and calculated the total sequential time.

Figure 6 shows a graph of six kernel pairs and the min-
imum times for each pair. For the benchmarks we used,
the device (an NVIDIA GTX 460) was able to run 28 work-
groups on the device at one time. The first 27 bars on the
graph of each kernel pair show the combined runtime with
the workgroup combinations, and the last bar on each graph
shows the sequential runtime. The darker column shows
the minimum runtime, and thus the optimal runtime for the
pair. Many of the graphs show a “bathtub” shape, indicating
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Figure 6: Runtimes for concurrent kernels with the
partitioning algorithm. The dark column with the
arrow indicates the minimum value. The final col-
umn indicates the combined sequential runtime for
each merged kernel pair.

that both kernels suffer significantly when their computation
resources (i.e. scheduler workgroups) are restricted. In the
cases that show an increasing trend towards the right, the
first kernel is able to execute efficiently, even with limited
computation resources. In one case (bitonicSort-kmeans-
kernel-c), the sequential runtime is less than all of the sched-
uler runtime combinations, indicating that running the ker-
nels concurrently is detrimental.

This case study demonstrated that KernelMerge can be
used for determining the optimal workgroup partitioning for
concurrent kernels, and it also demonstrates that naively
scheduling the kernels together can produce undesirable re-
sults.

Figure 7 compares the results of the work-stealing algo-
rithm to the sweet spots found by the partitioning algo-
rithm. As the figure shows, the work-stealing algorithm ap-
proaches the optimal results found by the partitioning algo-
rithm, without needing to perform an exhaustive search.

4. RELATED WORK

As of version 3.0, NVIDIA’s CUDA has a limited ability
to run concurrent kernels devices with compute capability
2.0 or above (e.g., Fermi GPUs) [1]. The kernels must be
run in different CUDA streams that are explicitly set up
by the programmer, and the CUDA runtime does not guar-
antee that kernels will run concurrently. Furthermore, the
number of workgroups per kernel that are run concurrently
is not definable by the progarmmer. KernelMerge allows
workgroup counts to be set in the scheduler, and although
there are crucial overheads at this point in time, minimal
hardware changes would significantly increase the efficiency
of KernelMerge.

Guevara et al. [4] discuss a CUDA scheduler that runs
orthogonally bound kernels to increase throughput for both
kernels, although all kernels must be hand-merged and an-
alyzed by hand. Wang et al. [8] demonstrate the benefits of
kernel “funneling” of CUDA kernels into a context so that
they can be run concurrently. They do not discuss how the
kernels interfere with each other on a GPU, although their
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Figure 7: Results of the work-stealing scheduler
compared to the sweet spot partitioning scheduler
result. In most cases, the work-stealing algorithm
approaches the partitioning sweet spot.

benchmarks are most likely memory bound as they perform
relatively few calculations per memory access.

Chen et al. [3] propose a dynamic load balancing scheme
for single and multiple GPUs. They implement a task queue
with similar functionality to KernelMerge and that launches
thread blocks (the CUDA equivalent of OpenCL workgroups)
independently of the normal CUDA launch behavior. They
show a slight increase in performance on a single GPU using
their scheduler, due to their scheduler’s ability to begin ex-
ecution of new thread blocks while other thread blocks are
still running longer kernels. They do not discuss load bal-
ancing as it relates to the type of bounding exhibited by in-
dividual kernels. Wang et al. [7] propose a source-code level
kernel merging scheme in the interest of better device utiliza-
tion for decreased energy usage. Their tests are limited to
GPGPU-Sim [2], but their experiments indicate significant
energy reduction for fused kernels over serial execution.

Li et al. [6] propose a GPU virtualization layer that allows
multiple microprocessors to share GPU resources. Their vir-
tualization layer implements concurrent kernels in CUDA,
and they discuss computation and memory boundedness
(which they call “compute intensive” and “I/O-intensive”) as
it relates to running kernels concurrently. It is not clear how
they classified the individual kernels in order to determine
how they were bound.

5. CONCLUSION

We have presented a justification for our argument that
running concurrent kernels on a GPU can be beneficial for
overall compute throughput. We also showed that naively
scheduling kernel pairs together can have a negative effect,
and therefore it is necessary to dynamically schedule ker-
nels together. We demonstrated KernelMerge, an OpenCL
concurrent kernel scheduler that has a number of dials im-
portant for concurrent kernel research. We have also demon-
strated that a work-stealing algorithm for merging two ker-
nels can approximate optimal workgroup partitioning. For
future work, we plan on investigating how to characterize re-
source consumption for individual kernels in order to make
dynamic scheduling decisions.
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